ARM Cortex-M 的 SP
文章目录
- 1、栈
- 2、栈操作
- 3、Cortex-M中的栈
- 4、MDK中的SP操作流程
- 5、Micro-Lib的SP差别
- 1. 使用 Micro-Lib
- 2. 未使用 Micro-Lib
在嵌入式开发中,堆栈是一个很基础,同时也是非常重要的名词,堆栈可分为堆 (Heap) 和栈 (Stack) 。
- 栈(Stack): 一种顺序数据结构,满足后进先出(Last-In / First-Out)的原则,由编译器自动分配和释放。
- 堆(Heap):类似于链表结构,可对任意位置进行操作,通常由程序员手动分配,使用完需及时释放(free),不然容易造成内存泄漏。
1、栈
SP:stack pointer 栈指针,总是指向栈顶。
计算机中的堆栈主要用来保存临时数据、局部变量、存寄存器参数和中断/调用子程序程序的返回地址。
裸机中,SP 指向在系统启动文件中被设置为一个被预留大小的内存块顶部,每次调用函数,把需要的临时变化放入栈中,函数退出后,恢复为调用之前的值。
栈的作用:
- 保存现场
- 传递参数:汇编代码调用C函数时,需传递参数
- 保存临时变量:包括函数的非静态局部变量以及编译器自动生成的其他临时变量
2、栈操作
Cortex-M 中堆栈方向是向低地址方向增长,为满堆栈机制。栈一般放在 .bss 段之后

C语言会自动入栈出栈,所以程序员不需要关心这些(在汇编的时候加入)。汇编语言需要手工处理入栈出栈。
3、Cortex-M中的栈
在 ARM Cortex-M 中 SP 是通用寄存器,为 R13 寄存器

在 Corte-M 中采用双栈设计,分为 MSP 和 PSP。
MSP 和 PSP 的含义是 Main_Stack_Pointer 和 Process_Stack_Pointer,在逻辑地址上他们都是 R13。
权威手册上说的很清楚 PSP 主要是在 Handler 的模式下使用,MSP 主要在线程模式下使用(当然你在线程模式下也可以调用PSP,需要你做特殊的处理)
这意味着同一个逻辑地址,实际上有两个物理寄存器,一个为 MSP,一个为 PSP,在不同的工作模式调用不同的物理寄存器。在任何一个时刻只能使用一个堆栈指针,要么使用 MSP,要么使用 PSP。
-
MSP:主堆栈指针,当程序复位后(开始运行后),一直到第一次任务切换完成前,使用的都是 MSP,即:
main()函数运行时用的是 MSP。 -
PSP:进程堆栈指针,切换任务之后 PendSV 服务程序中有
ORR LR, LR, #0x04这句,意思就是 PendSV 中断返回后使用的 PSP 指针,此时 PSP 已经指向了所运行任务的堆栈,所以返回后就可以就接着该任务继续运行下去了。
裸机中只会用到 MSP,当 main() 函数开始运行前,启动文件会给这个函数分配一个堆栈空间,用于保存 main() 函数运行过程中变量的保存。此时MSP就指向了该堆栈的首地址。
4、MDK中的SP操作流程
以 STM32F103C8T6 为例分析在 MDK 中 SP 相关的运行流程。其中 STM32F103C8T6 内存为 20K(0x5000),地址:0x20000000 ~ 0x20005000。
STM32 中的启动文件 startup_stm32f10x_md.s 文件与 SP 相关部分代码:
; Amount of memory (in bytes) allocated for Stack
; Tailor this value to your application needs
; <h> Stack Configuration
; <o> Stack Size (in Bytes) <0x0-0xFFFFFFFF:8>
; </h>Stack_Size EQU 0x00000400AREA STACK, NOINIT, READWRITE, ALIGN=3
Stack_Mem SPACE Stack_Size
__initial_sp; <h> Heap Configuration
; <o> Heap Size (in Bytes) <0x0-0xFFFFFFFF:8>
; </h>Heap_Size EQU 0x00000200AREA HEAP, NOINIT, READWRITE, ALIGN=3
__heap_base
Heap_Mem SPACE Heap_Size
__heap_limitPRESERVE8THUMB; Vector Table Mapped to Address 0 at ResetAREA RESET, DATA, READONLYEXPORT __VectorsEXPORT __Vectors_EndEXPORT __Vectors_Size__Vectors DCD __initial_sp ; Top of StackDCD Reset_Handler ; Reset HandlerDCD NMI_Handler ; NMI HandlerDCD HardFault_Handler ; Hard Fault HandlerDCD MemManage_Handler ; MPU Fault HandlerDCD BusFault_Handler ; Bus Fault HandlerDCD UsageFault_Handler ; Usage Fault HandlerDCD 0 ; ReservedDCD 0 ; ReservedDCD 0 ; ReservedDCD 0 ; ReservedDCD SVC_Handler ; SVCall HandlerDCD DebugMon_Handler ; Debug Monitor HandlerDCD 0 ; ReservedDCD PendSV_Handler ; PendSV HandlerDCD SysTick_Handler ; SysTick Handler; External InterruptsDCD WWDG_IRQHandler ; Window WatchdogDCD PVD_IRQHandler ; PVD through EXTI Line detectDCD TAMPER_IRQHandler ; TamperDCD RTC_IRQHandler ; RTCDCD FLASH_IRQHandler ; FlashDCD RCC_IRQHandler ; RCCDCD EXTI0_IRQHandler ; EXTI Line 0DCD EXTI1_IRQHandler ; EXTI Line 1DCD EXTI2_IRQHandler ; EXTI Line 2DCD EXTI3_IRQHandler ; EXTI Line 3DCD EXTI4_IRQHandler ; EXTI Line 4DCD DMA1_Channel1_IRQHandler ; DMA1 Channel 1DCD DMA1_Channel2_IRQHandler ; DMA1 Channel 2DCD DMA1_Channel3_IRQHandler ; DMA1 Channel 3DCD DMA1_Channel4_IRQHandler ; DMA1 Channel 4DCD DMA1_Channel5_IRQHandler ; DMA1 Channel 5DCD DMA1_Channel6_IRQHandler ; DMA1 Channel 6DCD DMA1_Channel7_IRQHandler ; DMA1 Channel 7DCD ADC1_2_IRQHandler ; ADC1_2DCD USB_HP_CAN1_TX_IRQHandler ; USB High Priority or CAN1 TXDCD USB_LP_CAN1_RX0_IRQHandler ; USB Low Priority or CAN1 RX0DCD CAN1_RX1_IRQHandler ; CAN1 RX1DCD CAN1_SCE_IRQHandler ; CAN1 SCEDCD EXTI9_5_IRQHandler ; EXTI Line 9..5DCD TIM1_BRK_IRQHandler ; TIM1 BreakDCD TIM1_UP_IRQHandler ; TIM1 UpdateDCD TIM1_TRG_COM_IRQHandler ; TIM1 Trigger and CommutationDCD TIM1_CC_IRQHandler ; TIM1 Capture CompareDCD TIM2_IRQHandler ; TIM2DCD TIM3_IRQHandler ; TIM3DCD TIM4_IRQHandler ; TIM4DCD I2C1_EV_IRQHandler ; I2C1 EventDCD I2C1_ER_IRQHandler ; I2C1 ErrorDCD I2C2_EV_IRQHandler ; I2C2 EventDCD I2C2_ER_IRQHandler ; I2C2 ErrorDCD SPI1_IRQHandler ; SPI1DCD SPI2_IRQHandler ; SPI2DCD USART1_IRQHandler ; USART1DCD USART2_IRQHandler ; USART2DCD USART3_IRQHandler ; USART3DCD EXTI15_10_IRQHandler ; EXTI Line 15..10DCD RTCAlarm_IRQHandler ; RTC Alarm through EXTI LineDCD USBWakeUp_IRQHandler ; USB Wakeup from suspend
__Vectors_End__Vectors_Size EQU __Vectors_End - __VectorsAREA |.text|, CODE, READONLY;*******************************************************************************
; User Stack and Heap initialization
;*******************************************************************************IF :DEF:__MICROLIB EXPORT __initial_spEXPORT __heap_baseEXPORT __heap_limitELSEIMPORT __use_two_region_memoryEXPORT __user_initial_stackheap__user_initial_stackheapLDR R0, = Heap_MemLDR R1, =(Stack_Mem + USR_Stack_Size)LDR R2, = (Heap_Mem + Heap_Size)LDR R3, = Stack_MemBX LR
- __initial_sp:指向栈顶,在运行后会赋值给 MSP。Stack_Size:栈大小,当前分配为 0x400。
- __heap_base:堆开始地址;__heap_limit:堆结束地址;Heap_Size:堆大小,当前分配为 0x200。
- __Vectors:中断向量表入口地址,__Vectors_End:中断向量表结束地址;__Vectors_Size:中断向量表大小。
Cortex-M 采用矢量中断模式,中断向量表首地址放的是栈顶地址(__initial_sp)。
- 堆/栈初始化:导出相关变量。MDK 中,是否使用 Micro-LIB,对栈地址影响很大,下面重点讲一下。
5、Micro-Lib的SP差别
1. 使用 Micro-Lib
使用 EXPORT 伪指令分别导出 __initial_sp、__heap_base、__heap_limit,在 __main 中会处理完后跳转到 C 语言的 main() 函数。
- 查看 MAP 文件可以得到相关的地址信息:
__initial_sp 0x20000408 Data 0 startup_stm32f10x_md.o(STACK)Execution Region RW_IRAM1 (Exec base: 0x20000000, Load base: 0x08001b78, Size: 0x00000408, Max: 0x00005000, ABSOLUTE)Exec Addr Load Addr Size Type Attr Idx E Section Name Object0x20000000 0x08001b78 0x00000004 Data RW 212 .data main_gc9a01.o
0x20000004 0x08001b7c 0x00000004 Data RW 3332 .data mc_w.l(errno.o)
0x20000008 - 0x00000400 Zero RW 186 STACK startup_stm32f10x_md.o
注:查看上面的 MAP 文件,在使用 Micro-LIB 模式下,heap 其实是没有被分配的。

- 通过 SWD 连接芯片,查看 SP 地址
在 startup_stm32f10x_md.s 中 Reset_Handler 中第一句话,SP=0x20000408;进入 main 之后,SP=0x200003F0;进入子函数后:SP=0x200003E8。MSP 与 SP 地址一样。
- 在 main() 中通过代码打印获取以上变量
extern uint32_t __Vectors_End;
extern uint32_t __Vectors;
extern uint32_t __Vectors_Size;printf("__Vectors: %08x\r\n", (uint32_t)&__Vectors);
printf("__Vectors_End: %08x\r\n", (uint32_t)&__Vectors_End);
printf("__Vectors_Size: %08x\r\n", (uint32_t)&__Vectors_Size);extern uint32_t __initial_sp;
printf("__initial_sp: %08x\r\n", (uint32_t)&__initial_sp);
运行结果:
__Vectors: 0x08000000
__Vectors_End: 0x080000EC
__Vectors_Size: 0x000000EC # 59 * 4 = 0xec
__initial_sp: 0x20000408
__Vectors 的值与 __initial_sp 的值一致。

2. 未使用 Micro-Lib
-
使用 IMPORT 伪指令导入
__use_two_region_memory,该函数需要用户实现。 -
使用 EXPORT 伪指令导出
__user_initial_stackheap,该函数 startup_stm32f10x_md.s 中已经实现,用于提供编译器的初始化C库函数设置用户程序的堆栈所需要的堆栈信息。
LDR R0, = Heap_Mem ;堆顶LDR R1, =(Stack_Mem + Stack_Size) ;栈顶LDR R2, = (Heap_Mem + Heap_Size) ;堆末地址LDR R3, = Stack_Mem ;栈首地址BX LR ;等同于mov pc, lr,跳转并切换指令集,也就是切换到ARM指令集
- 查看 MAP 文件可以得到相关的地址信息:
Execution Region RW_IRAM1 (Exec base: 0x20000000, Load base: 0x08002330, Size: 0x00000668, Max: 0x00005000, ABSOLUTE)Exec Addr Load Addr Size Type Attr Idx E Section Name Object0x20000000 0x08002330 0x00000004 Data RW 212 .data main_gc9a01.o
0x20000004 - 0x00000060 Zero RW 3383 .bss c_w.l(libspace.o)
0x20000064 0x08002334 0x00000004 PAD
0x20000068 - 0x00000200 Zero RW 187 HEAP startup_stm32f10x_md.o
0x20000268 - 0x00000400 Zero RW 186 STACK startup_stm32f10x_md.o
- 通过 SWD 连接芯片,查看 SP 地址
在 startup_stm32f10x_md.s 中 Reset_Handler 中第一句话,SP=0x20000668;进入 main 之后,SP=0x20000650;进入子函数后:SP=00x20000648
- __Vectors 的值与栈顶地址一致

相关文章:
ARM Cortex-M 的 SP
文章目录 1、栈2、栈操作3、Cortex-M中的栈4、MDK中的SP操作流程5、Micro-Lib的SP差别1. 使用 Micro-Lib2. 未使用 Micro-Lib 在嵌入式开发中,堆栈是一个很基础,同时也是非常重要的名词,堆栈可分为堆 (Heap) 和栈 (Stack) 。 栈(Stack): 一种…...
【原创】鲲鹏ARM构架openEuler操作系统安装Oracle 19c
作者:einyboy 【原创】鲲鹏ARM构架openEuler操作系统安装Oracle 19c | 云非云计算机科学、自然科学技术科谱http://www.nclound.com/index.php/2023/09/03/%E3%80%90%E5%8E%9F%E5%88%9B%E3%80%91%E9%B2%B2%E9%B9%8Farm%E6%9E%84%E6%9E%B6openeuler%E6%93%8D%E4%BD%9C%E7%B3%BB%…...
k8s之存储篇---数据卷-挂载
挂载是指将定义在 Pod 中的数据卷关联到容器,同一个 Pod 中的同一个数据卷可以被挂载到该 Pod 中的多个容器上。 数据卷内子路径 有时候我们需要在同一个 Pod 的不同容器间共享数据卷。使用 volumeMounts.subPath 属性,可以使容器在挂载数据卷时指向数…...
无涯教程-JavaScript - TDIST函数
The TDIST function replaces the T.DIST.2T & T.DIST.RT functions in Excel 2010. 描述 该函数返回学生t分布的百分点(概率),其中数值(x)是t的计算值,将为其计算百分点。 t分布用于小样本数据集的假设检验。使用此函数代替t分布的临界值表。 语法 TDIST(x,deg_fr…...
IP子网的划分
文章目录 一、子网掩码1. 产生背景2. 定义3. 分类 二、VLSM算法1. 得出下列参数2. 计算划分结果3. 举例子计算 三、常见子网划分对应关系四、练习IP编址题目需求解题1. 192.168.1.100/282. 172.16.0.58/263. 25.83.149.222/254. 100.100.243.18/205. 10.100.100.100/10 首先可以…...
弹性盒子的使用
一、定义 弹性盒子是一种用于按照布局元素的一维布局方法,它可以简便、完整、响应式地实现各种页面布局。 容器中存在两条轴,主轴和交叉轴(相当于我们坐标轴的x轴和y轴)。我们可以通过flex-direction来决定主轴的方向。 主轴(main axis&am…...
软件测试/测试开发丨Selenium 网页frame与多窗口处理
点此获取更多相关资料 本文为霍格沃兹测试开发学社学员学习笔记分享 原文链接:https://ceshiren.com/t/topic/27048 一、多窗口处理. 1.1、多窗口简介 点击某些链接,会重新打开⼀个窗⼜,对于这种情况,想在新页⾯上操作࿰…...
MySQL高阶语句(三)
一、NULL值 在 SQL 语句使用过程中,经常会碰到 NULL 这几个字符。通常使用 NULL 来表示缺失 的值,也就是在表中该字段是没有值的。如果在创建表时,限制某些字段不为空,则可以使用 NOT NULL 关键字,不使用则默认可以为空…...
链表OJ练习(2)
一、分割链表 题目介绍: 思路:创建两个链表,ghead尾插大于x的节点,lhead尾插小于x的节点。先遍历链表。最后将ghead尾插到lhead后面,将大小链表链接。 我们需要在创建两个链表指针,指向两个链表的头节点&…...
ssh常用操作
ssh常用操作 SSH是一种安全协议,ssh是该协议的客户端程序,openssh-server则是该协议的服务端程序 常用系统都自带了ssh客户端程序,服务端程序则可能要安装 密码远程登陆 前提:服务器安装了openssh-server,未安装时…...
从AD迁移至AAD,看体外诊断领军企业如何用网络准入方案提升内网安全基线
摘要: 某医用电子跨国集团中国分支机构在由AD向AzureAD Global迁移时,创新使用宁盾网络准入,串联起上海、北京、无锡等国内多个职场与海外总部,实现平滑、稳定、全程无感知的无密码认证入网体验,并通过合规基线检查,确…...
Flutter系列文章-Flutter在实际业务中的应用
不同场景下的解决方案 1. 跨平台开发: 在移动应用开发中,面对不同的平台(iOS和Android),我们通常需要编写两套不同的代码。而Flutter通过一套代码可以构建适用于多个平台的应用,大大提高了开发效率&#x…...
FPGA | Verilog仿真VHDL文件
当VHDL模块中有Generic块时,应该怎么例化? VHDL模块代码 entity GenericExample isgeneric (DATA_WIDTH : positive : 8; -- 泛型参数:数据宽度ENABLE_FEATURE : boolean : true -- 泛型参数:是否启用特定功能);Port ( clk : …...
微服务--Gatway:网关
routes: - id:order_route(路由唯一 标识,路由到order) uri:http://localhost:8020 #需要转发的地址 #断言规则(用于路由规则的匹配) predicates: -path/order-serv/** -pathlb://order-service # lb: 使用nacos中的本地…...
Django传递dataframe对象到前端网页
在django前端页面上展示的数据,还是使用django模板自带的语法 方式1 不推荐使用 直接使用 【df.to_html(indexFalse)】 使用to_html他会生成一个最基本的表格没有任何的样式,一点都不好看,如果有需要的话可以自行修改表格的样式,…...
iOS swift5 弹出提示文字(停留1~2s)XHToastSwift
CoderZhuXH/XHToastSwift - github // // XHToast.swift // XHToastSwiftExample // // Created by xiaohui on 16/8/12. // Copyright © 2016年 CoderZhuXH. All rights reserved. // 代码地址:https://github.com/CoderZhuXH/XHToastSwiftimport UIKit/*** Toast…...
Spring Bean 的生命周期,如何被管理的
实例化一个Bean,也就是我们通常说的new 按照Spring上下文对实例化的Bean进行配置,也就是IOC注入 如果这个Bean实现了BeanNameAware接口,会调用它实现的setBeanName(String beanId)方法,此处传递的是Spring配置文件中Bean的ID 如…...
MATLAB算法实战应用案例精讲-【概念篇】量子机器学习
目录 前言 几个高频面试题目 机器学习的方法论 知识储备 机器学习的实现...
【kubernetes】Argo Rollouts -- k8s下的自动化蓝绿部署
蓝绿(Blue-Green)部署简介 在现代软件开发和交付中,确保应用程序的平稳更新和发布对于用户体验和业务连续性至关重要。蓝绿部署是一种备受推崇的部署策略,它允许开发团队在不影响用户的情况下,将新版本的应用程序引入生产环境。 蓝绿部署的核心思想在于维护两个独立的环…...
vue Cesium接入在线地图
Cesium接入在线地图只需在创建时将imageryProvider属性换为在线地图的地址即可。 目录 天地图 OSM地图 ArcGIS 地图 谷歌影像地图 天地图 //矢量服务let imageryProvider new Cesium.WebMapTileServiceImageryProvider({url: "http://t0.tianditu.com/vec_w/wmts?s…...
linux之kylin系统nginx的安装
一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源(HTML/CSS/图片等),响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址,提高安全性 3.负载均衡服务器 支持多种策略分发流量…...
在鸿蒙HarmonyOS 5中实现抖音风格的点赞功能
下面我将详细介绍如何使用HarmonyOS SDK在HarmonyOS 5中实现类似抖音的点赞功能,包括动画效果、数据同步和交互优化。 1. 基础点赞功能实现 1.1 创建数据模型 // VideoModel.ets export class VideoModel {id: string "";title: string ""…...
基于Flask实现的医疗保险欺诈识别监测模型
基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施,由雇主和个人按一定比例缴纳保险费,建立社会医疗保险基金,支付雇员医疗费用的一种医疗保险制度, 它是促进社会文明和进步的…...
土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等
🔍 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术,可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势,还能有效评价重大生态工程…...
基于 TAPD 进行项目管理
起因 自己写了个小工具,仓库用的Github。之前在用markdown进行需求管理,现在随着功能的增加,感觉有点难以管理了,所以用TAPD这个工具进行需求、Bug管理。 操作流程 注册 TAPD,需要提供一个企业名新建一个项目&#…...
NPOI Excel用OLE对象的形式插入文件附件以及插入图片
static void Main(string[] args) {XlsWithObjData();Console.WriteLine("输出完成"); }static void XlsWithObjData() {// 创建工作簿和单元格,只有HSSFWorkbook,XSSFWorkbook不可以HSSFWorkbook workbook new HSSFWorkbook();HSSFSheet sheet (HSSFSheet)workboo…...
MySQL 索引底层结构揭秘:B-Tree 与 B+Tree 的区别与应用
文章目录 一、背景知识:什么是 B-Tree 和 BTree? B-Tree(平衡多路查找树) BTree(B-Tree 的变种) 二、结构对比:一张图看懂 三、为什么 MySQL InnoDB 选择 BTree? 1. 范围查询更快 2…...
yaml读取写入常见错误 (‘cannot represent an object‘, 117)
错误一:yaml.representer.RepresenterError: (‘cannot represent an object’, 117) 出现这个问题一直没找到原因,后面把yaml.safe_dump直接替换成yaml.dump,确实能保存,但出现乱码: 放弃yaml.dump,又切…...
深度解析:etcd 在 Milvus 向量数据库中的关键作用
目录 🚀 深度解析:etcd 在 Milvus 向量数据库中的关键作用 💡 什么是 etcd? 🧠 Milvus 架构简介 📦 etcd 在 Milvus 中的核心作用 🔧 实际工作流程示意 ⚠️ 如果 etcd 出现问题会怎样&am…...
CppCon 2015 学习:Reactive Stream Processing in Industrial IoT using DDS and Rx
“Reactive Stream Processing in Industrial IoT using DDS and Rx” 是指在工业物联网(IIoT)场景中,结合 DDS(Data Distribution Service) 和 Rx(Reactive Extensions) 技术,实现 …...
