当前位置: 首页 > news >正文

C++中的volatile

volatile的本意是“易变的”,是一种类型修饰符,用它声明的类型变量表示可以被某些编译器未知的因素更改,比如操作系统、硬件或者其它线程等。遇到这个关键字声明的变量,编译器对访问该变量的代码就不再进行优化,从而可以提供对特殊地址的稳定访问。

当要求使用volatile 声明的变量的值的时候,系统总是重新从它所在的内存读取数据,即使它前面的指令刚刚从该处读取过数据。而且读取的数据立刻被寄存。例如:

volatile int i=10;int a = i;。。。//其他代码,并未明确告诉编译器,对i进行过操作int b = i;

volatile 指出 i是随时可能发生变化的,每次使用它的时候必须从i的地址中读取,因而编译器生成的汇编代码会重新从i的地址读取数据放在b中。而优化做法是,由于编译器发现两次从i读数据的代码之间的代码没有对i进行过操作,它会自动把上次读的数据放在b中。而不是重新从i里面读。这样以来,如果i是一个寄存器变量或者表示一个端口数据就容易出错,所以说volatile可以保证对特殊地址的稳定访问

#include <iostream>
using namespace std;int main(int argc,char* argv[])
{int i=10;int a=i;cout<<a<<endl;_asm{mov dword ptr [ebp-4],80}int b=i;cout<<b<<endl;
}

程序在VS2012环境下生成Release版本,输出结果是:
10
10

阅读以上程序,注意以下几个要点:

以上代码必须在Release模式下考查,因为只有Release模式下才会对程序代码进行优化,而这种优化在变量共享的环境下容易引发问题。
在语句b=i;之前,已经通过内联汇编代码修改了i的值,但是i的变化却没有反映到b中,如果i是一个被多个任务共享的变量,这种优化带来的错误很可能是致命的。
汇编代码[ebp-4]表示变量i的存储单元,因为ebp是扩展基址指针寄存器,存放函数所属栈的栈底地址,先入栈,占用4个字节。随着函数内申明的局部变量的增多,esp(栈顶指针寄存器)就会相应的减小,因为栈的生长方向由高地址向低地址生长。i为第一个变量,栈空间已被ebp入栈占用了4个字节,所以i的地址为ebp-i,[ebp-i]则表示变量i的存储单元。

加上volatile关键字

#include <stdio.h>void main(){volatile int i=10;int a = i;printf("i= %d/n",a);__asm {mov dword ptr [ebp-4], 20h}int b = i;printf("i= %d/n",b);}

在调试版本和release版本运行程序,输出都是:

i = 10

i = 32

 这说明这个volatile关键字发挥了它的作用!

总结:建议编译器不要对该变量进行优化

扩展问题:

1). 一个参数既可以是const还可以是volatile吗?解释为什么。

2). 一个指针可以是volatile 吗?解释为什么。
3). 下面的函数有什么错误:        
 

    int square(volatile int *ptr){return *ptr * *ptr;}

1). 是的。一个例子是只读的状态寄存器。它是volatile因为它可能被意想不到地改变。它是const因为程序不应该试图去修改它。
2). 是的。尽管这并不很常见。一个例子是当一个中服务子程序修该一个指向一个buffer的指针时。
3). 这段代码的有个恶作剧。这段代码的目的是用来返指针ptr指向值的平方,但是,由于ptr指向一个volatile型参数,编译器将产生类似下面的代码:

int square(volatile int *ptr){int a,b;a = *ptr;b = *ptr;return a * b;}

由于*ptr的值可能被意想不到地该变,因此a和b可能是不同的。结果,这段代码可能返不是你所期望的平方值!正确的代码如下:

     long square(volatile int *ptr){int a;a = *ptr;return a * a;}```

相关文章:

C++中的volatile

volatile的本意是“易变的”&#xff0c;是一种类型修饰符&#xff0c;用它声明的类型变量表示可以被某些编译器未知的因素更改&#xff0c;比如操作系统、硬件或者其它线程等。遇到这个关键字声明的变量&#xff0c;编译器对访问该变量的代码就不再进行优化&#xff0c;从而可…...

数学建模--一维插值法的多种插值方式的Python实现

目录 1.算法流程步骤 2.算法核心代码 3.算法效果展示 1.算法流程步骤 #算法的核心就是利用scipy中的interpolate来完成工作 #一共是5种一维插值算法形式: #插值方法&#xff1a;1.阶梯插值 2.线性插值 3.2阶样条插值 4.3阶样条插值 #"nearest"阶梯插值 #"zero&…...

爱校对:让法律、医疗、教育行业的文本更加无懈可击

在今天这个信息爆炸的世界里&#xff0c;文本准确性成了法律、医疗和教育这些严谨行业中一个不能忽视的要点。一个小错误可能造成严重的后果&#xff0c;甚至影响人们的生命和事业。这正是为什么更多的专业人士开始选择使用“爱校对”来确保他们的文档、研究和通讯无懈可击。 法…...

使用pip下载第三方软件包报错超时处理方法

报错如下&#xff1a; WARNING: Retrying (Retry(total4, connectNone, readNone, redirectNone, statusNone)) after connection broken by ‘ReadTimeoutEr ror(“HTTPSConnectionPool(host‘files.pythonhosted.org’, port443): Read timed out. (read timeout15)”)’: /p…...

计算古坐标——基于GPlates Web Service的坐标点重建

Gplates客户端和在线门户&#xff0c;pygplates和gplately是存在内在联系的应用&#xff0c;它们主要实现可视化&#xff0c;输入板块模型和化石点的现今坐标信息&#xff0c;在GPlates中可视化呈现&#xff0c;点位的坐标计算并不展现。而rgplates利用R语言提供了直接进行坐标…...

智安网络|加强软件供应链安全保障:共同抵御威胁的关键路径

在当今数字化时代&#xff0c;软件供应链安全成为了一个备受关注的话题。各行各业都依赖于软件产品和服务来支持其业务运营。然而&#xff0c;随着供应链的不断扩大和复杂化&#xff0c;软件供应链安全问题也日益突出。那么应该如何解决&#xff1f; 首先&#xff0c;软件供应…...

华为Mate 60系列发售,北斗卫星通信技术进一步深入大众消费市场

近日&#xff0c;华为Mate 60系列手机在没有举办发布会的情况下在官方商城突然上架开售&#xff0c;人气火爆。 值得一提的是&#xff0c;华为Mate60 Pro支持卫星通话&#xff0c;无地面网络时&#xff0c;也能拨打和接听卫星电话&#xff0c;还可自由编辑卫星消息。华为 Mate6…...

Grad-CAM,即梯度加权类激活映射 (Gradient-weighted Class Activation Mapping)

Grad-CAM&#xff0c;即梯度加权类激活映射 (Gradient-weighted Class Activation Mapping)&#xff0c;是一种用于解释卷积神经网络决策的方法。它通过可视化模型对于给定输入的关注区域来提供洞察。 原理: Grad-CAM的关键思想是将输出类别的梯度&#xff08;相对于特定卷积…...

程序发布——使用pyinstaller打包识别程序为exe可执行文件 详解

当我们使用python完成项目开发后,必然面对着如何将自己的程序分享给其他人使用,这就离不开程序的打包工作。对于大多数人而言,我们还是使用windows电脑居多,因此我们在大多数场景是需要将程序打包为exe的可执行文件。笔者将在本章节详细介绍使用pyinstaller进行打包的全过程…...

Docker 使用

简介 Docker是一个开源的容器引擎&#xff0c;它有助于更快地交付应用。 Docker可将应用程序和基础设施层隔离&#xff0c;并且能将基础设施当作程序一样进行管理。使用 Docker可更快地打包、测试以及部署应用程序&#xff0c;并可以缩短从编写到部署运行代码的周期。 Docker…...

电脑c盘变红满了怎么清理?4个方法轻松清理!

“我的电脑才用了不到一年&#xff0c;现在就已经满了&#xff01;电脑c盘变红满了应该怎么清理呢&#xff1f;有什么方法能帮我清理的干净一点吗&#xff1f;希望大家给我出出主意。” 随着我们使用电脑时间的增多&#xff0c;电脑C盘可能会变得满满当当&#xff0c;这会不仅会…...

【UE 材质】实现角度渐变材质、棋盘纹理材质

目标 步骤 一、角度渐变材质 1. 首先通过“Mask”节点将"Texture Coordinate" 节点的R、G通道分离 2. 通过“RemapValueRange”节点将0~1范围映射到-1~1 可以看到此时R通道效果&#xff1a; G通道效果&#xff1a; 继续补充如下节点 二、棋盘纹理材质 原视频链接&…...

[深度学习]1. 深度学习知识点汇总

本文记录了我在学习深度学习的过程中遇到过的不懂的知识点&#xff0c;为了方便翻阅&#xff0c;故将其发表于此&#xff0c;随时更新&#xff0c;供大家参考。 深度学习常见知识点 1. 测试精度和训练精度 在深度学习中&#xff0c;测试精度和训练精度是两个重要的指标&#…...

鲁棒优化入门(6)—Matlab+Yalmip两阶段鲁棒优化通用编程指南(上)

0.引言 上一篇博客介绍了使用Yalmip工具箱求解单阶段鲁棒优化的方法。这篇文章将和大家一起继续研究如何使用Yalmip工具箱求解两阶段鲁棒优化(默认看到这篇博客时已经有一定的基础了&#xff0c;如果没有可以看看我专栏里的其他文章)。关于两阶段鲁棒优化与列与约束生成算法的原…...

golang通过gorm操作sqlite设置主键自增

在 Golang 中使用 GORM 操作 SQLite 数据库时&#xff0c;可以通过以下步骤设置主键自增&#xff1a; 首先&#xff0c;确保已经安装了 GORM 和 SQLite 的驱动程序。你可以使用以下命令安装它们&#xff1a; go get -u gorm.io/gorm go get -u gorm.io/driver/sqlite导入所…...

基于Spring Boot的企业门户网站设计与实现(Java+spring boot+MySQL)

获取源码或者论文请私信博主 演示视频&#xff1a; 基于Spring Boot的企业门户网站设计与实现&#xff08;Javaspring bootMySQL&#xff09; 使用技术&#xff1a; 前端&#xff1a;html css javascript jQuery ajax thymeleaf 微信小程序 后端&#xff1a;Java springboot…...

Json解析流程

一、拿到了题库 分析一下可以定义的 1、序号&#xff0c;用来区分题目数&#xff0c;每个题有唯一的序号 2、题目&#xff0c;就是下图的Q 3、预设的回答&#xff0c;下图的A 分析完我可以知道有三个字段&#xff0c;分别是int index、string Q、string A。 二、把字段丢到…...

Mybatis 动态SQL – 使用choose标签动态生成条件语句

之前我们介绍了if,where标签的使用&#xff1b;本篇我们需要在if,where标签的基础上介绍如何使用Mybatis提供的choose标签动态生成条件语句。 如果您对if,where标签动态生成条件语句不太了解&#xff0c;建议您先进行了解后再阅读本篇&#xff0c;可以参考&#xff1a; Mybat…...

http接口自动化测试框架实现

目录 一、测试需求描述 二、实现方法 三、Excel表格样式 四、实现代码&#xff08;代码才是王道&#xff0c;有注释很容易就能看明白的&#xff09; 一、测试需求描述 对服务后台一系列的http接口功能测试。 输入&#xff1a;根据接口描述构造不同的参数输入值 输出&…...

Android逆向学习(三)vscode修改smali绕过vip

Android逆向学习&#xff08;三&#xff09;vscode修改smali绕过vip 写在前面 这是吾爱的第二个作业&#xff0c;主要就是要修改smali代码&#xff0c;其实smali代码我感觉没有必要去学&#xff0c;当然主要是我本来就会汇编语言&#xff0c;基本上汇编语言都是一样的&#x…...

KubeSphere 容器平台高可用:环境搭建与可视化操作指南

Linux_k8s篇 欢迎来到Linux的世界&#xff0c;看笔记好好学多敲多打&#xff0c;每个人都是大神&#xff01; 题目&#xff1a;KubeSphere 容器平台高可用&#xff1a;环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...

Python爬虫实战:研究MechanicalSoup库相关技术

一、MechanicalSoup 库概述 1.1 库简介 MechanicalSoup 是一个 Python 库,专为自动化交互网站而设计。它结合了 requests 的 HTTP 请求能力和 BeautifulSoup 的 HTML 解析能力,提供了直观的 API,让我们可以像人类用户一样浏览网页、填写表单和提交请求。 1.2 主要功能特点…...

React hook之useRef

React useRef 详解 useRef 是 React 提供的一个 Hook&#xff0c;用于在函数组件中创建可变的引用对象。它在 React 开发中有多种重要用途&#xff0c;下面我将全面详细地介绍它的特性和用法。 基本概念 1. 创建 ref const refContainer useRef(initialValue);initialValu…...

【服务器压力测试】本地PC电脑作为服务器运行时出现卡顿和资源紧张(Windows/Linux)

要让本地PC电脑作为服务器运行时出现卡顿和资源紧张的情况&#xff0c;可以通过以下几种方式模拟或触发&#xff1a; 1. 增加CPU负载 运行大量计算密集型任务&#xff0c;例如&#xff1a; 使用多线程循环执行复杂计算&#xff08;如数学运算、加密解密等&#xff09;。运行图…...

深入解析C++中的extern关键字:跨文件共享变量与函数的终极指南

&#x1f680; C extern 关键字深度解析&#xff1a;跨文件编程的终极指南 &#x1f4c5; 更新时间&#xff1a;2025年6月5日 &#x1f3f7;️ 标签&#xff1a;C | extern关键字 | 多文件编程 | 链接与声明 | 现代C 文章目录 前言&#x1f525;一、extern 是什么&#xff1f;&…...

精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南

精益数据分析&#xff08;97/126&#xff09;&#xff1a;邮件营销与用户参与度的关键指标优化指南 在数字化营销时代&#xff0c;邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天&#xff0c;我们将深入解析邮件打开率、网站可用性、页面参与时…...

解析奥地利 XARION激光超声检测系统:无膜光学麦克风 + 无耦合剂的技术协同优势及多元应用

在工业制造领域&#xff0c;无损检测&#xff08;NDT)的精度与效率直接影响产品质量与生产安全。奥地利 XARION开发的激光超声精密检测系统&#xff0c;以非接触式光学麦克风技术为核心&#xff0c;打破传统检测瓶颈&#xff0c;为半导体、航空航天、汽车制造等行业提供了高灵敏…...

WPF八大法则:告别模态窗口卡顿

⚙️ 核心问题&#xff1a;阻塞式模态窗口的缺陷 原始代码中ShowDialog()会阻塞UI线程&#xff0c;导致后续逻辑无法执行&#xff1a; var result modalWindow.ShowDialog(); // 线程阻塞 ProcessResult(result); // 必须等待窗口关闭根本问题&#xff1a…...

基于江科大stm32屏幕驱动,实现OLED多级菜单(动画效果),结构体链表实现(独创源码)

引言 在嵌入式系统中&#xff0c;用户界面的设计往往直接影响到用户体验。本文将以STM32微控制器和OLED显示屏为例&#xff0c;介绍如何实现一个多级菜单系统。该系统支持用户通过按键导航菜单&#xff0c;执行相应操作&#xff0c;并提供平滑的滚动动画效果。 本文设计了一个…...

【工具教程】多个条形码识别用条码内容对图片重命名,批量PDF条形码识别后用条码内容批量改名,使用教程及注意事项

一、条形码识别改名使用教程 打开软件并选择处理模式&#xff1a;打开软件后&#xff0c;根据要处理的文件类型&#xff0c;选择 “图片识别模式” 或 “PDF 识别模式”。如果是处理包含条形码的 PDF 文件&#xff0c;就选择 “PDF 识别模式”&#xff1b;若是处理图片文件&…...