Kafka3.0.0版本——增加副本因子
目录
- 一、服务器信息
- 二、启动zookeeper和kafka集群
- 2.1、先启动zookeeper集群
- 2.2、再启动kafka集群
- 三、增加副本因子
- 3.1、增加副本因子的概述
- 3.2、增加副本因子的示例
- 3.2.1、创建topic(主题)
- 3.2.2、手动增加副本存储
一、服务器信息
- 四台服务器
原始服务器名称 原始服务器ip 节点 centos7虚拟机1 192.168.136.27 broker0 centos7虚拟机2 192.168.136.28 broker1 centos7虚拟机3 192.168.136.29 broker2 centos7虚拟机4 192.168.136.30 broker3
二、启动zookeeper和kafka集群
2.1、先启动zookeeper集群
-
启动zookeeper集群
[root@localhost /]# cd /opt/module/zookeeper-3.5.7/bin/ [root@localhost bin]# pwd /opt/module/zookeeper-3.5.7/bin [root@localhost bin]# sh zkServer.sh start
2.2、再启动kafka集群
-
启动kafka集群
[root@localhost bin]# cd /opt/module/kafka-3.0.0/ [root@localhost kafka-3.0.0]# pwd /opt/module/kafka-3.0.0 [root@localhost kafka-3.0.0]# bin/kafka-server-start.sh -daemon config/server.properties [root@localhost kafka-3.0.0]# jps
三、增加副本因子
3.1、增加副本因子的概述
- 在生产环境当中,由于某个主题的重要等级需要提升,我们考虑增加副本。副本数的
增加需要先制定计划,然后根据计划执行。
3.2、增加副本因子的示例
3.2.1、创建topic(主题)
-
创建名称为twotopic的topic(主题)
bin/kafka-topics.sh --bootstrap-server 192.168.136.27:9092 --create --partitions 4 --replication-factor 1 --topic twotopic
-
查看分区副本存储情况,由下图可知:目前分布在broker0、broker1、broker2和broker3的4台服务器的某一个服务器上。
bin/kafka-topics.sh --bootstrap-server 192.168.136.27:9092 --describe --topic twotopic
3.2.2、手动增加副本存储
-
创建副本存储计划(所有副本都指定存储在 broker0、broker1、broker2 和broker3中)。
vim increase-replication-factor.json //增加以下内容 {"version":1,"partitions":[{"topic":"twotopic","partition":0,"replicas":[0,1,2,3]},{"topic":"twotopic","partition":1,"replicas":[0,1,2,3]},{"topic":"twotopic","partition":2,"replicas":[0,1,2,3]},{"topic":"twotopic","partition":3,"replicas":[0,1,2,3]}] }

-
执行副本存储计划。
bin/kafka-reassign-partitions.sh --bootstrap-server 192.168.136.27:9092 --reassignment-json-file increase-replication-factor.json --execute
-
验证副本存储计划。
bin/kafka-reassign-partitions.sh --bootstrap-server 192.168.136.27:9092 --reassignment-json-file increase-replication-factor.json --verify
-
查看分区副本存储情况。
由下图可知: 所有副本都指定存储在 broker0、broker1、broker2 和broker3中。

相关文章:
Kafka3.0.0版本——增加副本因子
目录 一、服务器信息二、启动zookeeper和kafka集群2.1、先启动zookeeper集群2.2、再启动kafka集群 三、增加副本因子3.1、增加副本因子的概述3.2、增加副本因子的示例3.2.1、创建topic(主题)3.2.2、手动增加副本存储 一、服务器信息 四台服务器 原始服务器名称原始服务器ip节点…...
升级iOS 17出现白苹果、不断重启等系统问题怎么办?
iOS 17发布后了,很多果粉都迫不及待的将iphone/ipad升级到最新iOS17系统,体验新系统功能。 但部分果粉因硬件、软件的各种情况,导致升级系统后出现故障,比如白苹果、不断重启、卡在系统升级界面等等问题。 如果遇到了这些系统问题…...
6. `Java` 并发基础之`ReentrantReadLock`
前言:随着多线程程序的普及,线程同步的问题变得越来越常见。Java中提供了多种同步机制来确保线程安全,其中之一就是ReentrantLock。ReentrantLock是Java中比较常用的一种同步机制,它提供了一系列比synchronized更加灵活和可控的操…...
float浮动布局大战position定位布局
华子目录 布局方式普通文档流布局浮动布局(浮动主要针对与black,inline元素)float属性浮动用途浮动元素父级高度塌陷 position属性定位篇相对定位(relative为属性值,配合left属性,和top属性使用)…...
算法 数据结构 递归插入排序 java插入排序 递归求解插入排序算法 如何用递归写插入排序 插入排序动图 插入排序优化 数据结构(十)
1. 插入排序(insertion-sort): 是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入 算法稳定性: 对于两个相同的数,经过…...
OpenCV(二十二):均值滤波、方框滤波和高斯滤波
目录 1.均值滤波 2.方框滤波 3.高斯滤波 1.均值滤波 OpenCV中的均值滤波(Mean Filter)是一种简单的滤波技术,用于平滑图像并减少噪声。它的原理非常简单:对于每个像素,将其与其周围邻域内像素的平均值作为新的像素值…...
二叉树的递归遍历和非递归遍历
目录 一.二叉树的递归遍历 1.先序遍历二叉树 2.中序遍历二叉树 3.后序遍历二叉树 二.非递归遍历(栈) 1.先序遍历 2.中序遍历 3.后序遍历 一.二叉树的递归遍历 定义二叉树 #其中TElemType可以是int或者是char,根据要求自定 typedef struct BiNode{TElemType data;stru…...
JDK17:未来已来,你准备好了吗?
🌷🍁 博主猫头虎(🐅🐾)带您 Go to New World✨🍁 🦄 博客首页——🐅🐾猫头虎的博客🎐 🐳 《面试题大全专栏》 🦕 文章图文…...
K8s和Docker
Kubernetes(简称为K8s)和Docker是两个相关但又不同的技术。 一、Docker 1、Docker是一种容器化平台,用于将应用程序及其依赖项打包成可移植的容器。 2、Docker容器可以在任何支持Docker的操作系统上运行 好处:提供了一种轻量级…...
使用物理机服务器应该注意的事项
使用物理机服务器应该注意的事项 如今云计算的发展已经遍布各大领域,尽管现在的云服务器火遍全网,但是仍有一些大型企业依旧选择使用独立物理服务器,你知道这是为什么吗?壹基比小鑫来告诉你吧。 独立物理服务器托管业务适合大中…...
py脚本解决ArcGIS Server服务内存过大的问题
在一台服务器上,使用ArcGIS Server发布地图服务,但是地图服务较多,在发布之后,服务器的内存持续处在95%上下的高位状态,导致服务器运行状态不稳定,经常需要重新启动。重新启动后重新进入这种内存高位的陷阱…...
Go语言Web开发入门指南
Go语言Web开发入门指南 欢迎来到Go语言的Web开发入门指南。Go语言因其出色的性能和并发支持而成为Web开发的热门选择。在本篇文章中,我们将介绍如何使用Go语言构建简单的Web应用程序,包括路由、模板、数据库连接和静态文件服务。 准备工作 在开始之前…...
保姆级教程——VSCode如何在Mac上配置C++的运行环境
vscode官方下载: 点击官网链接,下载对应的pkg,安装打开; https://code.visualstudio.com/插件安装 点击箭头所指插件商店按钮,yyds; 下载C/C 插件; ![外链图片转存 下载CodeLLDB插件&#x…...
Java 操作FTP服务器进行下载文件
用Java去操作FTP服务器去做下载,本文章里面分为单个下载和批量下载,批量下载只不过多了一层循环,为了方便参考,我代码都贴出来了。 不管单个下载还是多个,一定要记得,远程服务器的直接写文件夹路径…...
物理机服务器应该注意的事
物理机服务器应该注意的事 1、选址 服务器是个非常重要的硬件产品,对机房的也是有一定的要求的,比如温度、安全性,噪音、电源稳定性等等问题都需要解决!但是不是每个人都会选择自己建立一个机房,毕竟各方面加起来的成本都太高。这…...
信息化发展24
信息技术的发展 1 )在计算机软硬件方面, 计算机硬件技术将向超高速、超小型、平行处理、智能化的方向发展, 计算机硬件设备的体积越来越小、速度越来越高、容量越来越大、功耗越来越低、可靠性越来越高。 2 )计算机软件越来越丰富…...
Qt开发_调用OpenCV(3.4.7)设计完成人脸检测系统
一、前言 近年来,人脸识别技术得到了广泛的应用,它可以在各种场景中实现自动化的人脸检测和识别,例如安防监控、人脸解锁、人脸支付等。 该项目的目标是设计一个简单易用但功能强大的人脸检测系统,可以实时从摄像头采集视频,并对视频中的人脸进行准确的检测和框选。通过…...
Java 中 List 删除元素
fori循环 删除某个元素后,list的大小发生了变化,会导致遍历准确。 这种方式可以用在删除特定的一个元素时使用,但不适合循环删除多个元素时使用 增强for循环 删除元素后继续循环会报错误信息ConcurrentModificationException,但是…...
Redis:StringRedisTemplate简介
(笔记总结自b站黑马程序员课程) 为了在反序列化时知道对象的类型,JSON序列化器会将类的class类型写入json结果中,存入Redis,会带来额外的内存开销。 为了减少内存的消耗,我们可以采用手动序列化的方式&am…...
pytorch-神经网络-手写数字分类任务
Mnist分类任务: 网络基本构建与训练方法,常用函数解析 torch.nn.functional模块 nn.Module模块 读取Mnist数据集 会自动进行下载 %matplotlib inlinefrom pathlib import Path import requestsDATA_PATH Path("data") PATH DATA_PATH / &…...
AI Agent与Agentic AI:原理、应用、挑战与未来展望
文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例:使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例:使用OpenAI GPT-3进…...
大型活动交通拥堵治理的视觉算法应用
大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动(如演唱会、马拉松赛事、高考中考等)期间,城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例,暖城商圈曾因观众集中离场导致周边…...
理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端
🌟 什么是 MCP? 模型控制协议 (MCP) 是一种创新的协议,旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议,它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...
[10-3]软件I2C读写MPU6050 江协科技学习笔记(16个知识点)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16...
基于Docker Compose部署Java微服务项目
一. 创建根项目 根项目(父项目)主要用于依赖管理 一些需要注意的点: 打包方式需要为 pom<modules>里需要注册子模块不要引入maven的打包插件,否则打包时会出问题 <?xml version"1.0" encoding"UTF-8…...
根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:
根据万维钢精英日课6的内容,使用AI(2025)可以参考以下方法: 四个洞见 模型已经比人聪明:以ChatGPT o3为代表的AI非常强大,能运用高级理论解释道理、引用最新学术论文,生成对顶尖科学家都有用的…...
sipsak:SIP瑞士军刀!全参数详细教程!Kali Linux教程!
简介 sipsak 是一个面向会话初始协议 (SIP) 应用程序开发人员和管理员的小型命令行工具。它可以用于对 SIP 应用程序和设备进行一些简单的测试。 sipsak 是一款 SIP 压力和诊断实用程序。它通过 sip-uri 向服务器发送 SIP 请求,并检查收到的响应。它以以下模式之一…...
PAN/FPN
import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...
无人机侦测与反制技术的进展与应用
国家电网无人机侦测与反制技术的进展与应用 引言 随着无人机(无人驾驶飞行器,UAV)技术的快速发展,其在商业、娱乐和军事领域的广泛应用带来了新的安全挑战。特别是对于关键基础设施如电力系统,无人机的“黑飞”&…...
BLEU评分:机器翻译质量评估的黄金标准
BLEU评分:机器翻译质量评估的黄金标准 1. 引言 在自然语言处理(NLP)领域,衡量一个机器翻译模型的性能至关重要。BLEU (Bilingual Evaluation Understudy) 作为一种自动化评估指标,自2002年由IBM的Kishore Papineni等人提出以来,…...
