【python手写算法】逻辑回归实现分类(含公式推导)
公式推导:

代码实现:
# coding=utf-8
import matplotlib.pyplot as plt
import numpy as npdef f(w1,x1,w2,x2,b):z=w1*x1+w2*x2+breturn 1/(1+np.exp(-z))
if __name__ == '__main__':X1 =[12.46, 0.25, 5.22, 11.3, 6.81, 4.59, 0.66, 14.53, 15.49, 14.43,2.19, 1.35, 10.02, 12.93, 5.93, 2.92, 12.81, 4.88, 13.11, 5.8,29.01, 4.7, 22.33, 24.99, 18.85, 14.89, 10.58, 36.84, 42.36, 39.73,11.92, 7.45, 22.9, 36.62, 16.04, 16.56, 31.55, 20.04, 35.26, 23.59]X2 =[29.01, 4.7, 22.33, 24.99, 18.85, 14.89, 10.58, 36.84, 42.36, 39.73,11.92, 7.45, 22.9, 36.62, 16.04, 16.56, 31.55, 20.04, 35.26, 23.59,12.46, 0.25, 5.22, 11.3, 6.81, 4.59, 0.66, 14.53, 15.49, 14.43,2.19, 1.35, 10.02, 12.93, 5.93, 2.92, 12.81, 4.88, 13.11, 5.8]Y= []for i in range(len(X1)):if X1[i]+X2[i]<20:Y.append(0)else:Y.append(1);w1=1w2=-1b=2a=5 # 学习率w1_temp=-100w2_temp = -100b_temp=-100w1change = 100w2change = 100bchange = 100while abs(w1change)>1e-6 and abs(w2change)>1e-6 and abs(bchange)>1e-6:print(w1change)w1change=0w2change=0bchange=0for i in range(len(X1)):w1change+=(f(w1,X1[i],w2,X2[i],b)-Y[i])*X1[i]w2change += (f(w1,X1[i],w2,X2[i],b) - Y[i]) * X2[i]bchange+=(f(w1,X1[i],w2,X2[i],b) - Y[i])w1change/=len(X1)w2change /= len(X2)bchange /= len(X1)w1_temp=w1-a*w1changew2_temp = w2 - a * w2changeb_temp=b-a*bchangew1=w1_tempw2 = w2_tempb=b_tempprint("y=%.4f*x1+%.4f*x2+%.4f" % (w1,w2, b))X1_1 = []X1_2 = []X2_1 = []X2_2 = []for i in range(len(X1)):if(Y[i]==0):X1_1.append(X1[i])X2_1.append(X2[i])else:X1_2.append(X1[i])X2_2.append(X2[i])print(X1_1)# 简单画图显示plt.scatter(X1_1, X2_1, c="blue")plt.scatter(X1_2, X2_2, c="red")x = np.linspace(0, 40, 200) # 在0到50之间生成100个等间距的值y=(w1*x+b)/(-w2)plt.plot(x,y)plt.show()

效果还不错,我感觉逻辑回归的最佳学习率要比线性回归最佳学习率大多了。
相关文章:
【python手写算法】逻辑回归实现分类(含公式推导)
公式推导: 代码实现: # codingutf-8 import matplotlib.pyplot as plt import numpy as npdef f(w1,x1,w2,x2,b):zw1*x1w2*x2breturn 1/(1np.exp(-z)) if __name__ __main__:X1 [12.46, 0.25, 5.22, 11.3, 6.81, 4.59, 0.66, 14.53, 15.49, 14.43,2.1…...
【2023高教社杯数学建模国赛】ABCD题 问题分析、模型建立、参考文献及实现代码
【2023高教社杯数学建模国赛】ABCD题 问题分析、模型建立、参考文献及实现代码 1 比赛时间 北京时间:2023年9月7日 18:00-2023年9月10日20:00 2 思路内容 可以参考我提供的历史竞赛信息内容,最新更新我会发布在博客和知乎上,请关注我获得最…...
yum安装mysql5.7散记
## 数据源安装 $ yum -y install wget $ wget http://dev.mysql.com/get/mysql57-community-release-el7-8.noarch.rpm $ yum localinstall mysql57-community-release-el7-8.noarch.rpm $ yum repolist enabled | grep "mysql.*-community.*" $ yum install mysql-…...
DNS解析
1.DNS介绍 DNS 表示域名系统。此系统实质上是用于整理和识别各个域名的网络电话簿。电话簿将“Acme Pizza”之类的名称转换为要拨打的正确电话号码,而 DNS 将“www.google.com”之类的网络地址转换为托管该网站的计算机的物理 IP 地址,如“74.125.19.147…...
从jdk8 升级到jdk17的问题总结
目录 1. java.lang.reflect.InaccessibleObjectException: 2. java.lang.UnsatisfiedLinkError in autosys 3. java.lang.NoClassDefFoundError: Could not initialize class net.sf.jasperreports.engine.util.JRStyledTextParser 4. java.lang.UnsatisfiedLinkError: **…...
一百七十二、Flume——Flume采集Kafka数据写入HDFS中(亲测有效、附截图)
一、目的 作为日志采集工具Flume,它在项目中最常见的就是采集Kafka中的数据然后写入HDFS或者HBase中,这里就是用flume采集Kafka的数据导入HDFS中 二、各工具版本 (一)Kafka kafka_2.13-3.0.0.tgz (二)…...
pnpm 升级
1. 在以下路径下删除pnpm包 2. 执行which pnpm,在结果目录中删除pnpm 3. sudo npm install -g pnpm 重新安装,node默认使用16...
有关使用HttpServletRequest的Cookie的设置和获取
文章目录 小结问题和解决参考 小结 介绍了如何在HttpServletRequest中对Cookie的进行设置和获取。 问题和解决 在服务器端的HttpServletRequest中对Cookie的进行设置后,客户端在接下来的请求中会携带此设置好的Cookie,所以可以在服务器端接收请求时提…...
关于 Nginx 的哪些事
关于 Nginx 的哪些事 1、Nginx 主要功能2、Nginx 的常用命令2.1、启动Nginx2.2、停止 Nginx2.3、重新加载Nginx 配置2.4、检查Nginx配置文件2.5、指定配置文件2.6、检查Nginx版本2.7、显示Nginx帮助信息 3、Nginx 配置文件 nginx.conf3.1、Nginx 配置文件(nginx.con…...
插入排序——希尔排序
1、简述: 希尔排序(Shells Sort)是插入排序的一种又称“缩小增量排序”(Diminishing Increment Sort),是直接插入排序算法的一种更高效的改进版本。希尔排序是非稳定排序算法。该方法因 D.L.Shell 于 1959 年提出而得名。 希尔排…...
C语言之初阶总结篇
目录 NO.1 NO.2 NO.3 NO.4 NO.5 NO.6 NO.7 NO.8 NO.9 NO.10 NO.11 NO.12.概念tips NO.13.求最小公倍数 NO.14.最大公因数 NO.15.输入读取字符串 NO.16.倒置字符串 今天是一些C语言题目,最近天气炎热,多喝水。 NO.1 下面程序执行后&am…...
Android签名查看
查看签名文件信息 第一种方法: 1.打开cmd,执行keytool -list -v -keystore xxx.keystore,效果如下图: 第二种方法: 1.打开cmd,执行 keytool -list -v -keystore xxxx.keystore -storepass 签名文件密码࿰…...
Educational Codeforces Round 3
目录 A. USB Flash Drives B. The Best Gift C. Load Balancing D. Gadgets for dollars and pounds A. USB Flash Drives #include<bits/stdc.h>using namespace std; const int N1e65; typedef long long ll; typedef pair<ll,ll> pll; typedef array<int…...
Docker Compose常用命令
常用命令 1.1 restart, start, stop-- 启动和停止服务 命令必须在 docker-compose.yml文件所在的目录下执行。 # 前台启动, 启动项目中的所有服务。 $. docker-compose up# 后台启动, 启动所有服务并在后台运行。 $. docker-compose up -d# 停止所有服务。 $. docker-compose …...
C++——智能指针
智能指针 文章目录 智能指针内存泄漏智能指针解决内存泄漏问题智能指针的使用及原理RAII智能指针对象的拷贝问题 C中的智能指针auto_ptrunique_ptrshared_ptrweak_ptr定制包装器C11和boost中智能指针的关系 内存泄漏 什么是内存泄漏:内存泄漏指因为疏忽或错误造成程…...
CVE-2023-3836:大华智慧园区综合管理平台任意文件上传漏洞复现
文章目录 CVE-2023-3836:大华智慧园区综合管理平台任意文件上传漏洞复现0x01 前言0x02 漏洞描述0x03 影响范围0x04 漏洞环境0x05 漏洞复现1.访问漏洞环境2.构造POC3.复现 CVE-2023-3836:大华智慧园区综合管理平台任意文件上传漏洞复现 0x01 前言 免责声…...
LAMP搭建WordPress
L linux A apache hhtpd M mysql/maridb P PHP1、 安装php yum -y install php php-fpm php-server php-mysql1.1、 启动php-fpm并自启 systemctl enable php-fpm --now[rootecs-1cee ~]# systemctl status php-fpm ● php-fpm.service - The PHP FastCGI Process ManagerLoa…...
【数学建模竞赛】预测类赛题常用算法解析
解析常见的预测类算法 灰色预测模型 灰色预测模型是一种利用少量的、不完全的信息,建立数学模型并进行预测的方法。该方法通过对系统行为特征的发展变化规律进行估计预测,同时也可以对行为特征的异常情况发生的时刻进行估计计算,并研究特定…...
OFDM 系统在 AWGN 信道下对不同载波频率偏移 (CFO) 的 BER 灵敏度研究(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...
go基础07-了解map实现原理并高效使用
对于C程序员出身的Gopher来说,map类型是和切片、interface一样能让他们感受到Go语言先进性的重要语法元素。map类型也是Go语言中最常用的数据类型之一。 go 中 map 怎么表现? 一些有关Go语言的中文教程或译本将map称为字典或哈希表,但在这里…...
Rust 异步编程
Rust 异步编程 引言 Rust 是一种系统编程语言,以其高性能、安全性以及零成本抽象而著称。在多核处理器成为主流的今天,异步编程成为了一种提高应用性能、优化资源利用的有效手段。本文将深入探讨 Rust 异步编程的核心概念、常用库以及最佳实践。 异步编程基础 什么是异步…...
Spring AI 入门:Java 开发者的生成式 AI 实践之路
一、Spring AI 简介 在人工智能技术快速迭代的今天,Spring AI 作为 Spring 生态系统的新生力量,正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务(如 OpenAI、Anthropic)的无缝对接&…...
k8s业务程序联调工具-KtConnect
概述 原理 工具作用是建立了一个从本地到集群的单向VPN,根据VPN原理,打通两个内网必然需要借助一个公共中继节点,ktconnect工具巧妙的利用k8s原生的portforward能力,简化了建立连接的过程,apiserver间接起到了中继节…...
UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)
UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中,UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化…...
ArcGIS Pro制作水平横向图例+多级标注
今天介绍下载ArcGIS Pro中如何设置水平横向图例。 之前我们介绍了ArcGIS的横向图例制作:ArcGIS横向、多列图例、顺序重排、符号居中、批量更改图例符号等等(ArcGIS出图图例8大技巧),那这次我们看看ArcGIS Pro如何更加快捷的操作。…...
Yolov8 目标检测蒸馏学习记录
yolov8系列模型蒸馏基本流程,代码下载:这里本人提交了一个demo:djdll/Yolov8_Distillation: Yolov8轻量化_蒸馏代码实现 在轻量化模型设计中,**知识蒸馏(Knowledge Distillation)**被广泛应用,作为提升模型…...
JVM虚拟机:内存结构、垃圾回收、性能优化
1、JVM虚拟机的简介 Java 虚拟机(Java Virtual Machine 简称:JVM)是运行所有 Java 程序的抽象计算机,是 Java 语言的运行环境,实现了 Java 程序的跨平台特性。JVM 屏蔽了与具体操作系统平台相关的信息,使得 Java 程序只需生成在 JVM 上运行的目标代码(字节码),就可以…...
4. TypeScript 类型推断与类型组合
一、类型推断 (一) 什么是类型推断 TypeScript 的类型推断会根据变量、函数返回值、对象和数组的赋值和使用方式,自动确定它们的类型。 这一特性减少了显式类型注解的需要,在保持类型安全的同时简化了代码。通过分析上下文和初始值,TypeSc…...
(一)单例模式
一、前言 单例模式属于六大创建型模式,即在软件设计过程中,主要关注创建对象的结果,并不关心创建对象的过程及细节。创建型设计模式将类对象的实例化过程进行抽象化接口设计,从而隐藏了类对象的实例是如何被创建的,封装了软件系统使用的具体对象类型。 六大创建型模式包括…...
破解路内监管盲区:免布线低位视频桩重塑停车管理新标准
城市路内停车管理常因行道树遮挡、高位设备盲区等问题,导致车牌识别率低、逃费率高,传统模式在复杂路段束手无策。免布线低位视频桩凭借超低视角部署与智能算法,正成为破局关键。该设备安装于车位侧方0.5-0.7米高度,直接规避树枝遮…...
