【python手写算法】逻辑回归实现分类(含公式推导)
公式推导:

代码实现:
# coding=utf-8
import matplotlib.pyplot as plt
import numpy as npdef f(w1,x1,w2,x2,b):z=w1*x1+w2*x2+breturn 1/(1+np.exp(-z))
if __name__ == '__main__':X1 =[12.46, 0.25, 5.22, 11.3, 6.81, 4.59, 0.66, 14.53, 15.49, 14.43,2.19, 1.35, 10.02, 12.93, 5.93, 2.92, 12.81, 4.88, 13.11, 5.8,29.01, 4.7, 22.33, 24.99, 18.85, 14.89, 10.58, 36.84, 42.36, 39.73,11.92, 7.45, 22.9, 36.62, 16.04, 16.56, 31.55, 20.04, 35.26, 23.59]X2 =[29.01, 4.7, 22.33, 24.99, 18.85, 14.89, 10.58, 36.84, 42.36, 39.73,11.92, 7.45, 22.9, 36.62, 16.04, 16.56, 31.55, 20.04, 35.26, 23.59,12.46, 0.25, 5.22, 11.3, 6.81, 4.59, 0.66, 14.53, 15.49, 14.43,2.19, 1.35, 10.02, 12.93, 5.93, 2.92, 12.81, 4.88, 13.11, 5.8]Y= []for i in range(len(X1)):if X1[i]+X2[i]<20:Y.append(0)else:Y.append(1);w1=1w2=-1b=2a=5 # 学习率w1_temp=-100w2_temp = -100b_temp=-100w1change = 100w2change = 100bchange = 100while abs(w1change)>1e-6 and abs(w2change)>1e-6 and abs(bchange)>1e-6:print(w1change)w1change=0w2change=0bchange=0for i in range(len(X1)):w1change+=(f(w1,X1[i],w2,X2[i],b)-Y[i])*X1[i]w2change += (f(w1,X1[i],w2,X2[i],b) - Y[i]) * X2[i]bchange+=(f(w1,X1[i],w2,X2[i],b) - Y[i])w1change/=len(X1)w2change /= len(X2)bchange /= len(X1)w1_temp=w1-a*w1changew2_temp = w2 - a * w2changeb_temp=b-a*bchangew1=w1_tempw2 = w2_tempb=b_tempprint("y=%.4f*x1+%.4f*x2+%.4f" % (w1,w2, b))X1_1 = []X1_2 = []X2_1 = []X2_2 = []for i in range(len(X1)):if(Y[i]==0):X1_1.append(X1[i])X2_1.append(X2[i])else:X1_2.append(X1[i])X2_2.append(X2[i])print(X1_1)# 简单画图显示plt.scatter(X1_1, X2_1, c="blue")plt.scatter(X1_2, X2_2, c="red")x = np.linspace(0, 40, 200) # 在0到50之间生成100个等间距的值y=(w1*x+b)/(-w2)plt.plot(x,y)plt.show()

效果还不错,我感觉逻辑回归的最佳学习率要比线性回归最佳学习率大多了。
相关文章:
【python手写算法】逻辑回归实现分类(含公式推导)
公式推导: 代码实现: # codingutf-8 import matplotlib.pyplot as plt import numpy as npdef f(w1,x1,w2,x2,b):zw1*x1w2*x2breturn 1/(1np.exp(-z)) if __name__ __main__:X1 [12.46, 0.25, 5.22, 11.3, 6.81, 4.59, 0.66, 14.53, 15.49, 14.43,2.1…...
【2023高教社杯数学建模国赛】ABCD题 问题分析、模型建立、参考文献及实现代码
【2023高教社杯数学建模国赛】ABCD题 问题分析、模型建立、参考文献及实现代码 1 比赛时间 北京时间:2023年9月7日 18:00-2023年9月10日20:00 2 思路内容 可以参考我提供的历史竞赛信息内容,最新更新我会发布在博客和知乎上,请关注我获得最…...
yum安装mysql5.7散记
## 数据源安装 $ yum -y install wget $ wget http://dev.mysql.com/get/mysql57-community-release-el7-8.noarch.rpm $ yum localinstall mysql57-community-release-el7-8.noarch.rpm $ yum repolist enabled | grep "mysql.*-community.*" $ yum install mysql-…...
DNS解析
1.DNS介绍 DNS 表示域名系统。此系统实质上是用于整理和识别各个域名的网络电话簿。电话簿将“Acme Pizza”之类的名称转换为要拨打的正确电话号码,而 DNS 将“www.google.com”之类的网络地址转换为托管该网站的计算机的物理 IP 地址,如“74.125.19.147…...
从jdk8 升级到jdk17的问题总结
目录 1. java.lang.reflect.InaccessibleObjectException: 2. java.lang.UnsatisfiedLinkError in autosys 3. java.lang.NoClassDefFoundError: Could not initialize class net.sf.jasperreports.engine.util.JRStyledTextParser 4. java.lang.UnsatisfiedLinkError: **…...
一百七十二、Flume——Flume采集Kafka数据写入HDFS中(亲测有效、附截图)
一、目的 作为日志采集工具Flume,它在项目中最常见的就是采集Kafka中的数据然后写入HDFS或者HBase中,这里就是用flume采集Kafka的数据导入HDFS中 二、各工具版本 (一)Kafka kafka_2.13-3.0.0.tgz (二)…...
pnpm 升级
1. 在以下路径下删除pnpm包 2. 执行which pnpm,在结果目录中删除pnpm 3. sudo npm install -g pnpm 重新安装,node默认使用16...
有关使用HttpServletRequest的Cookie的设置和获取
文章目录 小结问题和解决参考 小结 介绍了如何在HttpServletRequest中对Cookie的进行设置和获取。 问题和解决 在服务器端的HttpServletRequest中对Cookie的进行设置后,客户端在接下来的请求中会携带此设置好的Cookie,所以可以在服务器端接收请求时提…...
关于 Nginx 的哪些事
关于 Nginx 的哪些事 1、Nginx 主要功能2、Nginx 的常用命令2.1、启动Nginx2.2、停止 Nginx2.3、重新加载Nginx 配置2.4、检查Nginx配置文件2.5、指定配置文件2.6、检查Nginx版本2.7、显示Nginx帮助信息 3、Nginx 配置文件 nginx.conf3.1、Nginx 配置文件(nginx.con…...
插入排序——希尔排序
1、简述: 希尔排序(Shells Sort)是插入排序的一种又称“缩小增量排序”(Diminishing Increment Sort),是直接插入排序算法的一种更高效的改进版本。希尔排序是非稳定排序算法。该方法因 D.L.Shell 于 1959 年提出而得名。 希尔排…...
C语言之初阶总结篇
目录 NO.1 NO.2 NO.3 NO.4 NO.5 NO.6 NO.7 NO.8 NO.9 NO.10 NO.11 NO.12.概念tips NO.13.求最小公倍数 NO.14.最大公因数 NO.15.输入读取字符串 NO.16.倒置字符串 今天是一些C语言题目,最近天气炎热,多喝水。 NO.1 下面程序执行后&am…...
Android签名查看
查看签名文件信息 第一种方法: 1.打开cmd,执行keytool -list -v -keystore xxx.keystore,效果如下图: 第二种方法: 1.打开cmd,执行 keytool -list -v -keystore xxxx.keystore -storepass 签名文件密码࿰…...
Educational Codeforces Round 3
目录 A. USB Flash Drives B. The Best Gift C. Load Balancing D. Gadgets for dollars and pounds A. USB Flash Drives #include<bits/stdc.h>using namespace std; const int N1e65; typedef long long ll; typedef pair<ll,ll> pll; typedef array<int…...
Docker Compose常用命令
常用命令 1.1 restart, start, stop-- 启动和停止服务 命令必须在 docker-compose.yml文件所在的目录下执行。 # 前台启动, 启动项目中的所有服务。 $. docker-compose up# 后台启动, 启动所有服务并在后台运行。 $. docker-compose up -d# 停止所有服务。 $. docker-compose …...
C++——智能指针
智能指针 文章目录 智能指针内存泄漏智能指针解决内存泄漏问题智能指针的使用及原理RAII智能指针对象的拷贝问题 C中的智能指针auto_ptrunique_ptrshared_ptrweak_ptr定制包装器C11和boost中智能指针的关系 内存泄漏 什么是内存泄漏:内存泄漏指因为疏忽或错误造成程…...
CVE-2023-3836:大华智慧园区综合管理平台任意文件上传漏洞复现
文章目录 CVE-2023-3836:大华智慧园区综合管理平台任意文件上传漏洞复现0x01 前言0x02 漏洞描述0x03 影响范围0x04 漏洞环境0x05 漏洞复现1.访问漏洞环境2.构造POC3.复现 CVE-2023-3836:大华智慧园区综合管理平台任意文件上传漏洞复现 0x01 前言 免责声…...
LAMP搭建WordPress
L linux A apache hhtpd M mysql/maridb P PHP1、 安装php yum -y install php php-fpm php-server php-mysql1.1、 启动php-fpm并自启 systemctl enable php-fpm --now[rootecs-1cee ~]# systemctl status php-fpm ● php-fpm.service - The PHP FastCGI Process ManagerLoa…...
【数学建模竞赛】预测类赛题常用算法解析
解析常见的预测类算法 灰色预测模型 灰色预测模型是一种利用少量的、不完全的信息,建立数学模型并进行预测的方法。该方法通过对系统行为特征的发展变化规律进行估计预测,同时也可以对行为特征的异常情况发生的时刻进行估计计算,并研究特定…...
OFDM 系统在 AWGN 信道下对不同载波频率偏移 (CFO) 的 BER 灵敏度研究(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...
go基础07-了解map实现原理并高效使用
对于C程序员出身的Gopher来说,map类型是和切片、interface一样能让他们感受到Go语言先进性的重要语法元素。map类型也是Go语言中最常用的数据类型之一。 go 中 map 怎么表现? 一些有关Go语言的中文教程或译本将map称为字典或哈希表,但在这里…...
基于大模型的 UI 自动化系统
基于大模型的 UI 自动化系统 下面是一个完整的 Python 系统,利用大模型实现智能 UI 自动化,结合计算机视觉和自然语言处理技术,实现"看屏操作"的能力。 系统架构设计 #mermaid-svg-2gn2GRvh5WCP2ktF {font-family:"trebuchet ms",verdana,arial,sans-…...
vscode(仍待补充)
写于2025 6.9 主包将加入vscode这个更权威的圈子 vscode的基本使用 侧边栏 vscode还能连接ssh? debug时使用的launch文件 1.task.json {"tasks": [{"type": "cppbuild","label": "C/C: gcc.exe 生成活动文件"…...
Nginx server_name 配置说明
Nginx 是一个高性能的反向代理和负载均衡服务器,其核心配置之一是 server 块中的 server_name 指令。server_name 决定了 Nginx 如何根据客户端请求的 Host 头匹配对应的虚拟主机(Virtual Host)。 1. 简介 Nginx 使用 server_name 指令来确定…...
【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验
系列回顾: 在上一篇中,我们成功地为应用集成了数据库,并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了!但是,如果你仔细审视那些 API,会发现它们还很“粗糙”:有…...
Android15默认授权浮窗权限
我们经常有那种需求,客户需要定制的apk集成在ROM中,并且默认授予其【显示在其他应用的上层】权限,也就是我们常说的浮窗权限,那么我们就可以通过以下方法在wms、ams等系统服务的systemReady()方法中调用即可实现预置应用默认授权浮…...
华为云Flexus+DeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建
华为云FlexusDeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建 前言 如今大模型其性能出色,华为云 ModelArts Studio_MaaS大模型即服务平台华为云内置了大模型,能助力我们轻松驾驭 DeepSeek-V3/R1,本文中将分享如何…...
使用 SymPy 进行向量和矩阵的高级操作
在科学计算和工程领域,向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能,能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作,并通过具体…...
ABAP设计模式之---“简单设计原则(Simple Design)”
“Simple Design”(简单设计)是软件开发中的一个重要理念,倡导以最简单的方式实现软件功能,以确保代码清晰易懂、易维护,并在项目需求变化时能够快速适应。 其核心目标是避免复杂和过度设计,遵循“让事情保…...
使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度
文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...
uniapp 开发ios, xcode 提交app store connect 和 testflight内测
uniapp 中配置 配置manifest 文档:manifest.json 应用配置 | uni-app官网 hbuilderx中本地打包 下载IOS最新SDK 开发环境 | uni小程序SDK hbulderx 版本号:4.66 对应的sdk版本 4.66 两者必须一致 本地打包的资源导入到SDK 导入资源 | uni小程序SDK …...
