当前位置: 首页 > news >正文

【python手写算法】逻辑回归实现分类(含公式推导)

公式推导:
请添加图片描述
代码实现:

# coding=utf-8
import matplotlib.pyplot as plt
import numpy as npdef f(w1,x1,w2,x2,b):z=w1*x1+w2*x2+breturn 1/(1+np.exp(-z))
if __name__ == '__main__':X1 =[12.46, 0.25, 5.22, 11.3, 6.81, 4.59, 0.66, 14.53, 15.49, 14.43,2.19, 1.35, 10.02, 12.93, 5.93, 2.92, 12.81, 4.88, 13.11, 5.8,29.01, 4.7, 22.33, 24.99, 18.85, 14.89, 10.58, 36.84, 42.36, 39.73,11.92, 7.45, 22.9, 36.62, 16.04, 16.56, 31.55, 20.04, 35.26, 23.59]X2 =[29.01, 4.7, 22.33, 24.99, 18.85, 14.89, 10.58, 36.84, 42.36, 39.73,11.92, 7.45, 22.9, 36.62, 16.04, 16.56, 31.55, 20.04, 35.26, 23.59,12.46, 0.25, 5.22, 11.3, 6.81, 4.59, 0.66, 14.53, 15.49, 14.43,2.19, 1.35, 10.02, 12.93, 5.93, 2.92, 12.81, 4.88, 13.11, 5.8]Y= []for i in range(len(X1)):if X1[i]+X2[i]<20:Y.append(0)else:Y.append(1);w1=1w2=-1b=2a=5 # 学习率w1_temp=-100w2_temp = -100b_temp=-100w1change = 100w2change = 100bchange = 100while abs(w1change)>1e-6 and abs(w2change)>1e-6 and abs(bchange)>1e-6:print(w1change)w1change=0w2change=0bchange=0for i in range(len(X1)):w1change+=(f(w1,X1[i],w2,X2[i],b)-Y[i])*X1[i]w2change += (f(w1,X1[i],w2,X2[i],b) - Y[i]) * X2[i]bchange+=(f(w1,X1[i],w2,X2[i],b) - Y[i])w1change/=len(X1)w2change /= len(X2)bchange /= len(X1)w1_temp=w1-a*w1changew2_temp = w2 - a * w2changeb_temp=b-a*bchangew1=w1_tempw2 = w2_tempb=b_tempprint("y=%.4f*x1+%.4f*x2+%.4f" % (w1,w2, b))X1_1 = []X1_2 = []X2_1 = []X2_2 = []for i in range(len(X1)):if(Y[i]==0):X1_1.append(X1[i])X2_1.append(X2[i])else:X1_2.append(X1[i])X2_2.append(X2[i])print(X1_1)# 简单画图显示plt.scatter(X1_1, X2_1, c="blue")plt.scatter(X1_2, X2_2, c="red")x = np.linspace(0, 40, 200)  # 在0到50之间生成100个等间距的值y=(w1*x+b)/(-w2)plt.plot(x,y)plt.show()

在这里插入图片描述
效果还不错,我感觉逻辑回归的最佳学习率要比线性回归最佳学习率大多了。

相关文章:

【python手写算法】逻辑回归实现分类(含公式推导)

公式推导&#xff1a; 代码实现&#xff1a; # codingutf-8 import matplotlib.pyplot as plt import numpy as npdef f(w1,x1,w2,x2,b):zw1*x1w2*x2breturn 1/(1np.exp(-z)) if __name__ __main__:X1 [12.46, 0.25, 5.22, 11.3, 6.81, 4.59, 0.66, 14.53, 15.49, 14.43,2.1…...

【2023高教社杯数学建模国赛】ABCD题 问题分析、模型建立、参考文献及实现代码

【2023高教社杯数学建模国赛】ABCD题 问题分析、模型建立、参考文献及实现代码 1 比赛时间 北京时间&#xff1a;2023年9月7日 18:00-2023年9月10日20:00 2 思路内容 可以参考我提供的历史竞赛信息内容&#xff0c;最新更新我会发布在博客和知乎上&#xff0c;请关注我获得最…...

yum安装mysql5.7散记

## 数据源安装 $ yum -y install wget $ wget http://dev.mysql.com/get/mysql57-community-release-el7-8.noarch.rpm $ yum localinstall mysql57-community-release-el7-8.noarch.rpm $ yum repolist enabled | grep "mysql.*-community.*" $ yum install mysql-…...

DNS解析

1.DNS介绍 DNS 表示域名系统。此系统实质上是用于整理和识别各个域名的网络电话簿。电话簿将“Acme Pizza”之类的名称转换为要拨打的正确电话号码&#xff0c;而 DNS 将“www.google.com”之类的网络地址转换为托管该网站的计算机的物理 IP 地址&#xff0c;如“74.125.19.147…...

从jdk8 升级到jdk17的问题总结

目录 1. java.lang.reflect.InaccessibleObjectException: 2. java.lang.UnsatisfiedLinkError in autosys 3. java.lang.NoClassDefFoundError: Could not initialize class net.sf.jasperreports.engine.util.JRStyledTextParser 4. java.lang.UnsatisfiedLinkError: **…...

一百七十二、Flume——Flume采集Kafka数据写入HDFS中(亲测有效、附截图)

一、目的 作为日志采集工具Flume&#xff0c;它在项目中最常见的就是采集Kafka中的数据然后写入HDFS或者HBase中&#xff0c;这里就是用flume采集Kafka的数据导入HDFS中 二、各工具版本 &#xff08;一&#xff09;Kafka kafka_2.13-3.0.0.tgz &#xff08;二&#xff09;…...

pnpm 升级

1. 在以下路径下删除pnpm包 2. 执行which pnpm&#xff0c;在结果目录中删除pnpm 3. sudo npm install -g pnpm 重新安装&#xff0c;node默认使用16...

有关使用HttpServletRequest的Cookie的设置和获取

文章目录 小结问题和解决参考 小结 介绍了如何在HttpServletRequest中对Cookie的进行设置和获取。 问题和解决 在服务器端的HttpServletRequest中对Cookie的进行设置后&#xff0c;客户端在接下来的请求中会携带此设置好的Cookie&#xff0c;所以可以在服务器端接收请求时提…...

关于 Nginx 的哪些事

关于 Nginx 的哪些事 1、Nginx 主要功能2、Nginx 的常用命令2.1、启动Nginx2.2、停止 Nginx2.3、重新加载Nginx 配置2.4、检查Nginx配置文件2.5、指定配置文件2.6、检查Nginx版本2.7、显示Nginx帮助信息 3、Nginx 配置文件 nginx.conf3.1、Nginx 配置文件&#xff08;nginx.con…...

插入排序——希尔排序

1、简述&#xff1a; 希尔排序(Shells Sort)是插入排序的一种又称“缩小增量排序”&#xff08;Diminishing Increment Sort&#xff09;&#xff0c;是直接插入排序算法的一种更高效的改进版本。希尔排序是非稳定排序算法。该方法因 D.L.Shell 于 1959 年提出而得名。 希尔排…...

C语言之初阶总结篇

目录 NO.1 NO.2 NO.3 NO.4 NO.5 NO.6 NO.7 NO.8 NO.9 NO.10 NO.11 NO.12.概念tips NO.13.求最小公倍数 NO.14.最大公因数 NO.15.输入读取字符串 NO.16.倒置字符串 今天是一些C语言题目&#xff0c;最近天气炎热&#xff0c;多喝水。 NO.1 下面程序执行后&am…...

Android签名查看

查看签名文件信息 第一种方法&#xff1a; 1.打开cmd&#xff0c;执行keytool -list -v -keystore xxx.keystore&#xff0c;效果如下图&#xff1a; 第二种方法: 1.打开cmd&#xff0c;执行 keytool -list -v -keystore xxxx.keystore -storepass 签名文件密码&#xff0…...

Educational Codeforces Round 3

目录 A. USB Flash Drives B. The Best Gift C. Load Balancing D. Gadgets for dollars and pounds A. USB Flash Drives #include<bits/stdc.h>using namespace std; const int N1e65; typedef long long ll; typedef pair<ll,ll> pll; typedef array<int…...

Docker Compose常用命令

常用命令 1.1 restart, start, stop-- 启动和停止服务 命令必须在 docker-compose.yml文件所在的目录下执行。 # 前台启动, 启动项目中的所有服务。 $. docker-compose up# 后台启动, 启动所有服务并在后台运行。 $. docker-compose up -d# 停止所有服务。 $. docker-compose …...

C++——智能指针

智能指针 文章目录 智能指针内存泄漏智能指针解决内存泄漏问题智能指针的使用及原理RAII智能指针对象的拷贝问题 C中的智能指针auto_ptrunique_ptrshared_ptrweak_ptr定制包装器C11和boost中智能指针的关系 内存泄漏 什么是内存泄漏&#xff1a;内存泄漏指因为疏忽或错误造成程…...

CVE-2023-3836:大华智慧园区综合管理平台任意文件上传漏洞复现

文章目录 CVE-2023-3836&#xff1a;大华智慧园区综合管理平台任意文件上传漏洞复现0x01 前言0x02 漏洞描述0x03 影响范围0x04 漏洞环境0x05 漏洞复现1.访问漏洞环境2.构造POC3.复现 CVE-2023-3836&#xff1a;大华智慧园区综合管理平台任意文件上传漏洞复现 0x01 前言 免责声…...

LAMP搭建WordPress

L linux A apache hhtpd M mysql/maridb P PHP1、 安装php yum -y install php php-fpm php-server php-mysql1.1、 启动php-fpm并自启 systemctl enable php-fpm --now[rootecs-1cee ~]# systemctl status php-fpm ● php-fpm.service - The PHP FastCGI Process ManagerLoa…...

【数学建模竞赛】预测类赛题常用算法解析

解析常见的预测类算法 灰色预测模型 灰色预测模型是一种利用少量的、不完全的信息&#xff0c;建立数学模型并进行预测的方法。该方法通过对系统行为特征的发展变化规律进行估计预测&#xff0c;同时也可以对行为特征的异常情况发生的时刻进行估计计算&#xff0c;并研究特定…...

OFDM 系统在 AWGN 信道下对不同载波频率偏移 (CFO) 的 BER 灵敏度研究(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…...

go基础07-了解map实现原理并高效使用

对于C程序员出身的Gopher来说&#xff0c;map类型是和切片、interface一样能让他们感受到Go语言先进性的重要语法元素。map类型也是Go语言中最常用的数据类型之一。 go 中 map 怎么表现&#xff1f; 一些有关Go语言的中文教程或译本将map称为字典或哈希表&#xff0c;但在这里…...

【杂谈】-递归进化:人工智能的自我改进与监管挑战

递归进化&#xff1a;人工智能的自我改进与监管挑战 文章目录 递归进化&#xff1a;人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管&#xff1f;3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...

智慧医疗能源事业线深度画像分析(上)

引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...

Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务

通过akshare库&#xff0c;获取股票数据&#xff0c;并生成TabPFN这个模型 可以识别、处理的格式&#xff0c;写一个完整的预处理示例&#xff0c;并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务&#xff0c;进行预测并输…...

【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力

引言&#xff1a; 在人工智能快速发展的浪潮中&#xff0c;快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型&#xff08;LLM&#xff09;。该模型代表着该领域的重大突破&#xff0c;通过独特方式融合思考与非思考…...

MODBUS TCP转CANopen 技术赋能高效协同作业

在现代工业自动化领域&#xff0c;MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步&#xff0c;这两种通讯协议也正在被逐步融合&#xff0c;形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...

spring:实例工厂方法获取bean

spring处理使用静态工厂方法获取bean实例&#xff0c;也可以通过实例工厂方法获取bean实例。 实例工厂方法步骤如下&#xff1a; 定义实例工厂类&#xff08;Java代码&#xff09;&#xff0c;定义实例工厂&#xff08;xml&#xff09;&#xff0c;定义调用实例工厂&#xff…...

【android bluetooth 框架分析 04】【bt-framework 层详解 1】【BluetoothProperties介绍】

1. BluetoothProperties介绍 libsysprop/srcs/android/sysprop/BluetoothProperties.sysprop BluetoothProperties.sysprop 是 Android AOSP 中的一种 系统属性定义文件&#xff08;System Property Definition File&#xff09;&#xff0c;用于声明和管理 Bluetooth 模块相…...

Matlab | matlab常用命令总结

常用命令 一、 基础操作与环境二、 矩阵与数组操作(核心)三、 绘图与可视化四、 编程与控制流五、 符号计算 (Symbolic Math Toolbox)六、 文件与数据 I/O七、 常用函数类别重要提示这是一份 MATLAB 常用命令和功能的总结,涵盖了基础操作、矩阵运算、绘图、编程和文件处理等…...

如何在最短时间内提升打ctf(web)的水平?

刚刚刷完2遍 bugku 的 web 题&#xff0c;前来答题。 每个人对刷题理解是不同&#xff0c;有的人是看了writeup就等于刷了&#xff0c;有的人是收藏了writeup就等于刷了&#xff0c;有的人是跟着writeup做了一遍就等于刷了&#xff0c;还有的人是独立思考做了一遍就等于刷了。…...

算法笔记2

1.字符串拼接最好用StringBuilder&#xff0c;不用String 2.创建List<>类型的数组并创建内存 List arr[] new ArrayList[26]; Arrays.setAll(arr, i -> new ArrayList<>()); 3.去掉首尾空格...