当前位置: 首页 > news >正文

《自然语言处理(NLP)的最新进展:Transformers与GPT-4的浅析》


🌷🍁 博主猫头虎(🐅🐾)带您 Go to New World✨🍁
🦄 博客首页——🐅🐾猫头虎的博客🎐
🐳 《面试题大全专栏》 🦕 文章图文并茂🦖生动形象🐅简单易学!欢迎大家来踩踩~🌺
🌊 《IDEA开发秘籍专栏》 🐾 学会IDEA常用操作,工作效率翻倍~💐
🌊 《100天精通Golang(基础入门篇)》 🐅 学会Golang语言,畅玩云原生,走遍大小厂~💐

🪁🍁 希望本文能够给您带来一定的帮助🌸文章粗浅,敬请批评指正!🐅🐾🍁🐥


文章目录

  • 《自然语言处理(NLP)的最新进展:Transformers与GPT-4的浅析》
    • 摘要
    • 引言
    • 正文
      • 1. Transformers结构简介
        • 1.1 自注意力机制
        • 1.2 并行处理
      • 2. GPT-4模型探索
        • 2.1 模型规模和能力
        • 2.2 应用领域
      • 3. Transformers和GPT-4的挑战与前景
    • 总结
    • 参考资料
  • 原创声明

《自然语言处理(NLP)的最新进展:Transformers与GPT-4的浅析》

摘要

🐯 猫头虎博主 为您详解:自然语言处理(NLP)如何在近年来取得令人瞩目的进展,尤其是借助于Transformers结构和GPT-4模型。本文将为您探索这些技术的核心原理、应用和未来趋势。 NLP最新技术Transformers原理GPT-4模型自然语言生成

引言

🚀 自然语言处理(NLP)一直是人工智能领域的一个核心研究方向。近年来,借助于深度学习和大量数据,NLP取得了巨大的进步。特别是Transformers结构和GPT-4模型,为NLP开启了一个新的篇章。

正文

1. Transformers结构简介

🔍 Transformers结构由Vaswani等人在2017年提出,现已成为NLP任务的主流模型结构。

在这里插入图片描述

1.1 自注意力机制

🌟 Transformers的核心是自注意力机制,它能够捕捉输入数据的长距离依赖关系。

import tensorflow as tf
from tensorflow.keras.layers import MultiHeadAttentionmha = MultiHeadAttention(num_heads=8, key_dim=2)
y = mha(query, value)  # query and value are 3D tensors

1.2 并行处理

⚡ 与传统的RNN和LSTM不同,Transformers可以并行处理所有输入标记,从而大大提高了计算效率。

2. GPT-4模型探索

在这里插入图片描述

🔍 GPT-4是OpenAI发布的一种大型预训练语言模型,基于Transformers结构。

2.1 模型规模和能力

📘 GPT-4具有数十亿的参数,并在多种NLP任务上达到了人类水平的性能。

2.2 应用领域

🌍 GPT-4广泛应用于文本生成、问答系统、机器翻译等领域。

3. Transformers和GPT-4的挑战与前景

🤔 尽管Transformers和GPT-4在NLP领域取得了巨大的成功,但它们仍然面临一些挑战,如计算成本高、模型解释性差等。

总结

😇 Transformers结构和GPT-4模型为自然语言处理领域带来了前所未有的机会和挑战。通过深入了解这些技术,我们可以更好地利用其潜力,推动NLP领域的进一步发展。

参考资料

  1. Attention Is All You Need | Vaswani et al.
  2. OpenAI’s GPT-4 Blog Post
  3. Transformers for Natural Language Processing | François Chollet
  4. Natural Language Processing Advances | Stanford University

👩‍💻 猫头虎博主期待与您下次的相遇!一起探索NLP的无限魅力!🌟🚀

原创声明

======= ·

  • 原创作者: 猫头虎

作者wx: [ libin9iOak ]

学习复习

本文为原创文章,版权归作者所有。未经许可,禁止转载、复制或引用。

作者保证信息真实可靠,但不对准确性和完整性承担责任

未经许可,禁止商业用途。

如有疑问或建议,请联系作者。

感谢您的支持与尊重。

点击下方名片,加入IT技术核心学习团队。一起探索科技的未来,共同成长。

相关文章:

《自然语言处理(NLP)的最新进展:Transformers与GPT-4的浅析》

🌷🍁 博主猫头虎(🐅🐾)带您 Go to New World✨🍁 🦄 博客首页——🐅🐾猫头虎的博客🎐 🐳 《面试题大全专栏》 🦕 文章图文…...

Wireshark 用命令行分析数据包

1,那些情况需要使用命令行 Wireshark一次性提供了太多的信息。使用命令行工具可以限制打印出的信息,最后只显示相关数据,比如用单独一行来显示IP地址。命令行工具适用于过滤数据包捕获文件,并提供结果给另一个支持UNIX管道的工具…...

LVS DR模式负载均衡群集部署

目录 1 LVS-DR 模式的特点 1.1 数据包流向分析 1.2 DR 模式的特点 2 DR模式 LVS负载均衡群集部署 2.1 配置负载调度器 2.1.1 配置虚拟 IP 地址 2.1.2 调整 proc 响应参数 2.1.3 配置负载分配策略 2.2 部署共享存储 2.3 配置节点服务器 2.3.1 配置虚拟 IP 地址 2.3.2…...

探讨前后端分离开发的优势、实践以及如何实现更好的用户体验?

随着互联网技术的迅猛发展,前后端分离开发已经成为现代软件开发的一种重要趋势。这种开发模式将前端和后端的开发工作分开,通过清晰的接口协议进行通信,旨在优化开发流程、提升团队协作效率,并最终改善用户体验。本文将深入探讨前…...

微博一面:JVM预热,你的方案是啥?

说在前面 在40岁老架构师 尼恩的读者社区(50)中,最近有小伙伴拿到了一线互联网企业如微博、阿里、汽车之家、极兔、有赞、希音、百度、网易、滴滴的面试资格,遇到一几个很重要的面试题: JVM预热,你的方案是啥?Springb…...

open与fopen的区别

1. 来源 从来源的角度看,两者能很好的区分开,这也是两者最显而易见的区别: open是UNIX系统调用函数(包括LINUX等),返回的是文件描述符(File Descriptor),它是文件在文件…...

Unity记录一些glsl和hlsl的着色器Shader逆向代码

以下内容一般基于 GLSL 300 之后 以下某些代码行,是“伪代码“,绝大部分是renderDoc 逆向产生标准代码 本人OpenlGL零基础,也不打算重头学 目录 Clip() 剔除函数 discard; FS最终颜色输出 out 和最终颜色相加方程…...

基于Sentinel的微服务保护

前言 Sentinel是Alibaba开源的一款微服务流控组件,用于解决分布式应用场景下服务的稳定性问题。Sentinel具有丰富的应用场景,它基于流量提供一系列的服务保护措施,例如多线程秒杀情况下的系统承载,并发访问下的流量控制&#xff…...

Collectors类作用:

一、Collectors类: 1.1、Collectors介绍 Collectors类,是JDK1.8开始提供的一个的工具类,它专门用于对Stream操作流中的元素各种处理操作,Collectors类中提供了一些常用的方法,例如:toList()、toSet()、to…...

LASSO回归

LASSO回归 LASSO(Least Absolute Shrinkage and Selection Operator,最小绝对值收敛和选择算子算法)是一种回归分析技术,用于变量选择和正则化。它由Robert Tibshirani于1996年提出,作为传统最小二乘回归方法的替代品。 损失函数 1.线性回…...

机器学习中的 K-均值聚类算法及其优缺点。

K-均值聚类算法是一种常见的无监督学习算法,它可以将数据集分成 K 个簇,每个簇内部的数据点尽可能相似,而不同簇之间的数据点应尽可能不同。下面详细讲解 K-均值聚类算法的优缺点: 优点: 简单易用:K-均值…...

云计算与虚拟化

一、概念 什么是云计算? 云计算(cloud computing)是分布式计算的一种,指的是通过网络“云”将巨大的数据计算处理程序分解成无数个小程序,然后,通过多部服务器组成的系统进行处理和分析这些小程序得到结果…...

Linux常见进程类别

目录 常见进程类别 守护进程&精灵进程 任务管理 进程组 作业 作业 | 进程组 会话 w命令 守护进程 守护进程的创建 setsid()函数 daemon()函数 模拟实现daemon函数 前台进程 | 后台进程 僵尸进程 | 孤儿进程 僵尸进程的一些细节 守护进程 | 后台进程 守护…...

智能小车之蓝牙控制并测速小车、wife控制小车、4g控制小车、语音控制小车

目录 1. 蓝牙控制小车 2. 蓝牙控制并测速小车 3. wifi控制测速小车 4. 4g控制小车 5. 语音控制小车 1. 蓝牙控制小车 使用蓝牙模块,串口透传蓝牙模块,又叫做蓝牙串口模块 串口透传技术: 透传即透明传送,是指在数据的传输过…...

指针进阶(一)

指针进阶 1. 字符指针面试题 2. 指针数组3. 数组指针3.1 数组指针的定义3.2 &数组名VS数组名 3.3 数组指针的使用4. 数组传参和指针传参4.1 一维数组传参4.2 二维数组传参4.3 一级指针传参4.4 二级指针传参 前言 指针的主题,我们在初级阶段的《指针》章节已经接…...

c# sql 判断表中是否包含指定字段

你可以使用以下方法来判断一个 SQL 数据库中的表是否包含指定的字段。 首先,你需要连接到数据库,然后执行一条 SQL 查询语句来检查表结构。你可以使用 SELECT 语句和 INFORMATION_SCHEMA.COLUMNS 系统视图来获取表中的所有列信息。 下面是一个示例代码…...

08-JVM垃圾收集器详解

上一篇:07-垃圾收集算法详解 如果说收集算法是内存回收的方法论,那么垃圾收集器就是内存回收的具体实现。 虽然我们对各个收集器进行比较,但并非为了挑选出一个最好的收集器。因为直到现在为止还没有最好的垃圾收集器出现,更加没…...

sql_mode详解

文章目录 一、sql_mode作用二、查询sql_mode三、mysql8默认的mode配置(6个默认配置)四、常见mode详细解释mysql8默认配置了的mode(6个)需要自己配置的mode(4个) 五、设置sql_mode(一旦设置了&am…...

Vue3的新特性总结

一、Vue3 里 script 的三种写法 首先&#xff0c;Vue3 新增了一个叫做组合式 api 的东西&#xff0c;英文名叫 Composition API。因此 Vue3 的 script 现在支持三种写法。 1、最基本的 Vue2 写法 <template><div>{{ count }}</div><button click"…...

【Node】Mac多版本Node切换

1、查看当前电脑是否安装node node -v或者查看当前电脑通过brew安装的node路径 ls /usr/local/Cellar/node*2、查看可安装的node brew search node3、安装其他版本node 下载需要安装的node版本 brew install node144、brew切换node版本 假设之前的版本是18&#xff0c;需…...

深入剖析AI大模型:大模型时代的 Prompt 工程全解析

今天聊的内容&#xff0c;我认为是AI开发里面非常重要的内容。它在AI开发里无处不在&#xff0c;当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗"&#xff0c;或者让翻译模型 "将这段合同翻译成商务日语" 时&#xff0c;输入的这句话就是 Prompt。…...

Oracle查询表空间大小

1 查询数据库中所有的表空间以及表空间所占空间的大小 SELECTtablespace_name,sum( bytes ) / 1024 / 1024 FROMdba_data_files GROUP BYtablespace_name; 2 Oracle查询表空间大小及每个表所占空间的大小 SELECTtablespace_name,file_id,file_name,round( bytes / ( 1024 …...

Python:操作 Excel 折叠

💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 Python 操作 Excel 系列 读取单元格数据按行写入设置行高和列宽自动调整行高和列宽水平…...

循环冗余码校验CRC码 算法步骤+详细实例计算

通信过程&#xff1a;&#xff08;白话解释&#xff09; 我们将原始待发送的消息称为 M M M&#xff0c;依据发送接收消息双方约定的生成多项式 G ( x ) G(x) G(x)&#xff08;意思就是 G &#xff08; x ) G&#xff08;x) G&#xff08;x) 是已知的&#xff09;&#xff0…...

精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南

精益数据分析&#xff08;97/126&#xff09;&#xff1a;邮件营销与用户参与度的关键指标优化指南 在数字化营销时代&#xff0c;邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天&#xff0c;我们将深入解析邮件打开率、网站可用性、页面参与时…...

虚拟电厂发展三大趋势:市场化、技术主导、车网互联

市场化&#xff1a;从政策驱动到多元盈利 政策全面赋能 2025年4月&#xff0c;国家发改委、能源局发布《关于加快推进虚拟电厂发展的指导意见》&#xff0c;首次明确虚拟电厂为“独立市场主体”&#xff0c;提出硬性目标&#xff1a;2027年全国调节能力≥2000万千瓦&#xff0…...

如何更改默认 Crontab 编辑器 ?

在 Linux 领域中&#xff0c;crontab 是您可能经常遇到的一个术语。这个实用程序在类 unix 操作系统上可用&#xff0c;用于调度在预定义时间和间隔自动执行的任务。这对管理员和高级用户非常有益&#xff0c;允许他们自动执行各种系统任务。 编辑 Crontab 文件通常使用文本编…...

C#学习第29天:表达式树(Expression Trees)

目录 什么是表达式树&#xff1f; 核心概念 1.表达式树的构建 2. 表达式树与Lambda表达式 3.解析和访问表达式树 4.动态条件查询 表达式树的优势 1.动态构建查询 2.LINQ 提供程序支持&#xff1a; 3.性能优化 4.元数据处理 5.代码转换和重写 适用场景 代码复杂性…...

TSN交换机正在重构工业网络,PROFINET和EtherCAT会被取代吗?

在工业自动化持续演进的今天&#xff0c;通信网络的角色正变得愈发关键。 2025年6月6日&#xff0c;为期三天的华南国际工业博览会在深圳国际会展中心&#xff08;宝安&#xff09;圆满落幕。作为国内工业通信领域的技术型企业&#xff0c;光路科技&#xff08;Fiberroad&…...

破解路内监管盲区:免布线低位视频桩重塑停车管理新标准

城市路内停车管理常因行道树遮挡、高位设备盲区等问题&#xff0c;导致车牌识别率低、逃费率高&#xff0c;传统模式在复杂路段束手无策。免布线低位视频桩凭借超低视角部署与智能算法&#xff0c;正成为破局关键。该设备安装于车位侧方0.5-0.7米高度&#xff0c;直接规避树枝遮…...