当前位置: 首页 > news >正文

自适应迭代扩展卡尔曼滤波算法AIEKF估计SOC VS 扩展卡尔曼估计SOC

自适应迭代扩展卡尔曼滤波算法(AIEK)

自适应迭代扩展卡尔曼滤波算法(AIEK)是一种滤波算法,其目的是通过迭代过程来逐渐适应不同的状态和环境,从而优化滤波效果。

该算法的基本思路是在每一步迭代过程中,根据所观测的数据和状态方程,对滤波器的参数进行自适应调整,以便更好地拟合实际数据的分布。具体而言,该算法包括以下步骤:

初始化:首先,为滤波器的初始参数设定一个初始值,这些参数包括状态转移矩阵、测量矩阵、过程噪声协方差和测量噪声协方差等。
预测:根据当前的状态方程和滤波器参数,对下一个状态进行预测,并计算预测误差。
校正:根据预测结果和实际观测数据,对预测进行修正,以便更好地拟合实际数据的分布。
参数更新:根据校正结果,自适应地调整滤波器参数,以便在下一个迭代过程中更好地拟合数据。
该算法具有自适应性和迭代性,能够逐渐适应不同的状态和环境,从而优化滤波效果。在实际应用中,可以根据具体问题选择不同的滤波器参数调整方法和迭代策略,以获得更好的滤波效果。

加载待辨识工况数据

load FUDS.mat;       %导入数据
Ut = FUDS.Voltage;   %测量电压
I = FUDS.Current;    %测量电流
cs0=[   1.2761;-0.2899;0.0365;-0.0449;0.0095];

计算SOC实验数据

soc_act = nan(1,N);
ocv = nan(1,N);
soc_act(1)=1;
ocv(1)=Ut(1);
for i=2:Nsoc_act(i)=soc_act(i-1)-I(i)/(Qn);nihe=[1.936,-7.108,9.204,-4.603,1.33,3.416];ocv(i)=polyval(nihe,soc_act(i)); 
end

FFRLS参数在线辨识算法

[R0,R1,R2,C1,C2] = FFRLS(Ut,I,Qn,nihe,ff,cs0);% 辨识参数图
t=1:N;figure;
set(gcf,'Units','centimeters','Position',[2 2 19.6 8]); 
plot(t,R0,'r.-','LineWidth',1);
legend('R0(Ω)');figure;
set(gcf,'Units','centimeters','Position',[2 2 19.6 8]); 
plot(t,R1,'g-.','LineWidth',1);
legend('R1(Ω)');figure;
set(gcf,'Units','centimeters','Position',[2 2 19.6 8]); 
plot(t,C1,'b-','LineWidth',1);
legend('C1(F)');figure;
set(gcf,'Units','centimeters','Position',[2 2 19.6 8]); 
plot(t,R2,'c--','LineWidth',1);
legend('R2(Ω)');figure;
set(gcf,'Units','centimeters','Position',[2 2 19.6 8]); 
plot(t,C2,'m-','LineWidth',1);
legend('C2(F)');

EKF滤波算法

SOCest_init=0.9;
P0=1e-3;     %状态误差协方差初值
Q=1e-8;      %过程噪声期望值
R=1;      %观测噪声期望值[SOC_ekf,volt]=EKF(I,Ut,dt,Qn,SOCest_init,N,Q,R,nihe,P0,R0,R1,R2,C1,C2);
error_V_EKF= Ut'-volt;
error_SOC_EKF= soc_act-SOC_ekf;      %滤波处理后的误差

AIEKF滤波算法

X_aiekf=zeros(3,N);  %定义状态向量x
X_aiekf(:,1)=[0;0;SOCest_init];%状态向量x初值设定
Q=1e-8;
R=1;
P0=0.01*eye(3);%定义协方差
f=0.1;
M=30;           %误差积累值窗口系数
[SOC_aiekf,Um]=AIEKF(I',Ut',X_aiekf,f,M,Q,R,N,P0,R0,R1,R2,C1,C2,Qn,nihe);error_V_AIEKF= Ut'-Um;
error_SOC_AIEKF= soc_act-SOC_aiekf;      %滤波处理后的误差

绘图

t=1:N;
figure;
set(gcf,'Units','centimeters','Position',[2 2 19.6 8]); 
plot(t,Ut,'r',t,volt,'b',t,Um,'g');
legend('端电压真实值','端电压EKF估计值','端电压AIEKF估计值'); figure;
set(gcf,'Units','centimeters','Position',[2 2 19.6 8]); 
plot(t,error_V_EKF,'b',t,error_V_AIEKF,'g');
legend('EKF端电压误差','AIEKF端电压误差'); % SOC估计结果图
figure
hold on;box on;
plot(SOC_aiekf,'b');%AIEKF
plot(SOC_ekf,'k');  %EKF
plot(soc_act,'r');
legend('AIEKF','EKF','参考值')
xlabel('时间(s)')
ylabel('SOC')
axis([0 12000 0 1])figure
hold on;box on;
plot(100*error_SOC_EKF,'k');
plot(100*error_SOC_AIEKF,'b');
legend('EKF','AIEKF')
xlabel('时间(s)')
ylabel('SOC误差百分数(%)')
axis([0 12000 -10 15])

仿真结果

FUDS工况下参考SOC曲线
在这里插入图片描述

DST工况下参考SOC曲线
在这里插入图片描述

FUDS工况下SOC估计对比图(EKF与参考值)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

FUDS工况下SOC估算绝对误差曲线图
在这里插入图片描述

在这里插入图片描述

DST工况下SOC估计对比图(EKF与参考值)

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

DST工况下SOC估算绝对误差曲线图
在这里插入图片描述
在这里插入图片描述

FUDS工况下SOC估算曲线图(参考值 EKF AIEKF)

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

SOC估算不同算法绝对误差曲线图

在这里插入图片描述
在这里插入图片描述

DST工况下SOC估算曲线图(参考值 EKF AIEKF)

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

SOC估算不同算法绝对误差曲线图

在这里插入图片描述
在这里插入图片描述

相关文章:

自适应迭代扩展卡尔曼滤波算法AIEKF估计SOC VS 扩展卡尔曼估计SOC

自适应迭代扩展卡尔曼滤波算法(AIEK) 自适应迭代扩展卡尔曼滤波算法(AIEK)是一种滤波算法,其目的是通过迭代过程来逐渐适应不同的状态和环境,从而优化滤波效果。 该算法的基本思路是在每一步迭代过程中&a…...

2023-亲测有效-git clone失败怎么办?用代理?加git?

git 克隆不下来,超时 用以下格式: git clone https://ghproxy.com/https://github.com/Tencent/ncnn.git 你的网站前面加上 https://ghproxy.com/ 刷的一下就下完了!!...

An Empirical Study of GPT-3 for Few-Shot Knowledge-Based VQA

本文是LLM系列文章,针对《An Empirical Study of GPT-3 for Few-Shot Knowledge-Based VQA》的翻译。 GPT-3对基于小样本知识的VQA的实证研究 摘要引言相关工作方法OK-VQA上的实验VQAv2上的实验结论 摘要 基于知识的视觉问答(VQA)涉及回答需…...

2023高教社杯数学建模B题思路分析 - 多波束测线问题

# 1 赛题 B 题 多波束测线问题 单波束测深是利用声波在水中的传播特性来测量水体深度的技术。声波在均匀介质中作匀 速直线传播, 在不同界面上产生反射, 利用这一原理,从测量船换能器垂直向海底发射声波信 号,并记录从声波发射到…...

02-docker network

Docker网络 Docker网络是什么 Docker 网络是 Docker 容器之间进行通信和连接的网络环境。在 Docker 中,每个容器都有自己的网络命名空间,这意味着每个容器都有自己的网络接口、IP 地址和网络配置 Docker网络启动后,会在宿主机中建立一个名…...

栈和队列经典笔试题

文章目录 栈和队列的回顾💻栈🩳队列👟 栈和队列经典笔试题🔋有效的括号🎸用队列实现栈 🕯用栈实现队列🔭设计循环队列🧼 安静的夜晚 你在想谁吗 栈和队列的回顾💻 栈&am…...

No5.9:多边形内角和公式

#!/usr/bin/python # -*- coding: UTF-8 -*-#指定了编码,中文就能正常展示 # codingutf-8def calc_degree(n):#n代表边形的总数degree (n - 2) * 180#多边形内角和公式return degreeprint(calc_degree(3))#三角形的内角和 print(calc_degree(4))#四边形的内角和【小…...

EditPlus 配置python 及Anaconda中的python

若不是pycharm vscode 太大,太占内存,谁会想到用Notepad,EdirPlus 配置python呢!!! 话不多说,首先你自己安装好EditPlus。开始 菜单栏 选择 工具 -> 配置自定义工具 组名:python 命令:d:\*…...

linux 编译 llvm + clang

1. 需要下载以下三个压缩包,下载源码:Release LLVM 15.0.7 llvm/llvm-project GitHub clang-15.0.7.src.tar.xzcmake-15.0.7.src.tar.xzllvm-15.0.7.src.tar.xz​​​​​ 2. 解压后将 clang 源码放入 llvm/tools/ 下 3. 将解压后的 cmake-15.0.7…...

Mybatis 框架 ( 四 ) QueryWrapper

4.5.Wrapper条件构造器 Wrapper : 条件构造抽象类,最顶端父类 AbstractWrapper : 用于查询条件封装,生成 sql 的 where 条件 QueryWrapper : Entity 对象封装操作类,不是用lambda语法 UpdateWrapper &am…...

数据结构和算法之二分法查找

二分法查找,也称作二分查找或折半查找,是一种在有序数组中快速查找特定元素的算法。它采用分治法思想,通过将问题划分为规模更小的子问题,并且通过对子问题的查找来解决原问题。 二分法查找的思路是不断地将数组一分为二&#xf…...

系统日期如何在页面展示,框架是react或者vue3

安装插件dayjs或者moment.js 2.使用setInterval(useInterval)或者requestAnimationFrame react项目中useInterval的代码示例: import React, {useState } from react; import { useInterval } from "ahooks"; import moment fro…...

(二十二)大数据实战——Flume数据采集之故障转移案例实战

前言 本节内容我们完成Flume数据采集的故障转移案例,使用三台服务器,一台服务器负责采集nc数据,通过使用failover模式的Sink处理器完成监控数据的故障转移,使用Avro的方式完成flume之间采集数据的传输。整体架构如下:…...

前端小案例3:Flex弹性布局行内元素宽度自适应

前端小案例3:Flex弹性布局行内元素宽度自适应 项目背景:需要在一行上展示空调设备的三个模式(制冷、制热、通风)或者两个模式(制冷、制热);因为不同产品的模式数量不同,因此需要让模…...

纳尼?小说还要用看的?这可以听!无广!

这是一款听书软件,可以自定义书源,自己设置书架,页面简单易操作,无广告。 支持直接搜索书名,链接,图文,本地文件等方式听书 拥有30多主播声音,分类细致 支持倍速、添加BGM等...

【微服务部署】四、Jenkins一键打包部署NodeJS(Vue)前端项目步骤详解

本文介绍使用Jenkins一键将NodeJS(Vue)前端项目打包并上传到生产环境服务器,这里使用的是直接打包静态页面,发送到远程服务器Nginx配置目录的方式,首先确保服务器环境配置好,安装Nginx,运行目录…...

【前端】禁止别人调试自己的前端页面代码

无限debugger 前端页面防止调试的方法主要是通过不断 debugger 来疯狂输出断点,因为 debugger 在控制台被打开的时候就会执行由于程序被 debugger 阻止,所以无法进行断点调试,所以网页的请求也是看不到的代码如下: /** * 基础禁止…...

UDP的可靠性传输

UDP系列文章目录 第一章 UDP的可靠性传输-理论篇(一) 第二章 UDP的可靠性传输-理论篇(二) 文章目录 UDP系列文章目录前言1.TCP 和UDP格式对比2.UDP分片原理3.UDP 传输层应该注意问题4.MTU5.UDP 分片机制设计重点 一、ARQ协议什么…...

科研笔记:TPAMI submission guideline

1 author information Author Information - IEEE Transactions on Pattern Analysis and Machine Intelligence | IEEE Computer Society Digital Library 1.1 会议期刊extension 当一个TPAMI的提交基于之前的会议论文时,IEEE要求期刊论文是之前出版物的“实质…...

Python文件操作(02):打开文件、读文件、关闭文件

一、读文本文件 打开文件读文件内容关闭文件 1、在读取文件内容后进行解码操作 """ 1. 打开文件- 路径:相对路径:当前项目(读文件.py)所在的目录下查找需要读取的文件绝对路径:文件--右键--Copy Pat…...

基础测试工具使用经验

背景 vtune,perf, nsight system等基础测试工具,都是用过的,但是没有记录,都逐渐忘了。所以写这篇博客总结记录一下,只要以后发现新的用法,就记得来编辑补充一下 perf 比较基础的用法: 先改这…...

04-初识css

一、css样式引入 1.1.内部样式 <div style"width: 100px;"></div>1.2.外部样式 1.2.1.外部样式1 <style>.aa {width: 100px;} </style> <div class"aa"></div>1.2.2.外部样式2 <!-- rel内表面引入的是style样…...

土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等

&#x1f50d; 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术&#xff0c;可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势&#xff0c;还能有效评价重大生态工程…...

【C语言练习】080. 使用C语言实现简单的数据库操作

080. 使用C语言实现简单的数据库操作 080. 使用C语言实现简单的数据库操作使用原生APIODBC接口第三方库ORM框架文件模拟1. 安装SQLite2. 示例代码:使用SQLite创建数据库、表和插入数据3. 编译和运行4. 示例运行输出:5. 注意事项6. 总结080. 使用C语言实现简单的数据库操作 在…...

C# SqlSugar:依赖注入与仓储模式实践

C# SqlSugar&#xff1a;依赖注入与仓储模式实践 在 C# 的应用开发中&#xff0c;数据库操作是必不可少的环节。为了让数据访问层更加简洁、高效且易于维护&#xff0c;许多开发者会选择成熟的 ORM&#xff08;对象关系映射&#xff09;框架&#xff0c;SqlSugar 就是其中备受…...

聊一聊接口测试的意义有哪些?

目录 一、隔离性 & 早期测试 二、保障系统集成质量 三、验证业务逻辑的核心层 四、提升测试效率与覆盖度 五、系统稳定性的守护者 六、驱动团队协作与契约管理 七、性能与扩展性的前置评估 八、持续交付的核心支撑 接口测试的意义可以从四个维度展开&#xff0c;首…...

OPENCV形态学基础之二腐蚀

一.腐蚀的原理 (图1) 数学表达式&#xff1a;dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一&#xff0c;腐蚀跟膨胀属于反向操作&#xff0c;膨胀是把图像图像变大&#xff0c;而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...

处理vxe-table 表尾数据是单独一个接口,表格tableData数据更新后,需要点击两下,表尾才是正确的

修改bug思路&#xff1a; 分别把 tabledata 和 表尾相关数据 console.log() 发现 更新数据先后顺序不对 settimeout延迟查询表格接口 ——测试可行 升级↑&#xff1a;async await 等接口返回后再开始下一个接口查询 ________________________________________________________…...

深度学习水论文:mamba+图像增强

&#x1f9c0;当前视觉领域对高效长序列建模需求激增&#xff0c;对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模&#xff0c;以及动态计算优势&#xff0c;在图像质量提升和细节恢复方面有难以替代的作用。 &#x1f9c0;因此短时间内&#xff0c;就有不…...

uniapp 字符包含的相关方法

在uniapp中&#xff0c;如果你想检查一个字符串是否包含另一个子字符串&#xff0c;你可以使用JavaScript中的includes()方法或者indexOf()方法。这两种方法都可以达到目的&#xff0c;但它们在处理方式和返回值上有所不同。 使用includes()方法 includes()方法用于判断一个字…...