当前位置: 首页 > news >正文

分类预测 | MATLAB实现WOA-CNN-BiGRU鲸鱼算法优化卷积双向门控循环单元数据分类预测

分类预测 | MATLAB实现WOA-CNN-BiGRU鲸鱼算法优化卷积双向门控循环单元数据分类预测

目录

    • 分类预测 | MATLAB实现WOA-CNN-BiGRU鲸鱼算法优化卷积双向门控循环单元数据分类预测
      • 分类效果
      • 基本描述
      • 模型描述
      • 程序设计
      • 参考资料

分类效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本描述

1.Matlab实现WOA-CNN-BiGRU多特征分类预测,多特征输入模型,运行环境Matlab2020b及以上;
2.基于鲸鱼算法(WOA)优化卷积神经网络-双向门控循环单元(CNN-BiGRU)分类预测,优化参数为,学习率,隐含层节点,正则化参数;
3.多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用;
程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图;
4.data为数据集,输入12个特征,分四类;运行主程序即可,其余为函数文件,无需运行,可在下载区获取数据和程序内容。

模型描述

CNN 是一种前馈型神经网络,广泛应用于深度学习领域,主要由卷积层、池化层和全连接层组成,输入特征向量可以为多维向量组,采用局部感知和权值共享的方式。卷积层对原始数据提取特征量,深度挖掘数据的内在联系,池化层能够降低网络复杂度、减少训练参数,全连接层将处理后的数据进行合并,计算分类和回归结果。
BiGRU是LSTM的一种改进模型,将遗忘门和输入门集成为单一的更新门,同时混合了神经元状态和隐藏状态,可有效地缓解循环神经网络中“梯度消失”的问题,并能够在保持训练效果的同时减少训练参数。

程序设计

  • 完整程序和数据获取方式私信博主回复MATLAB实现WOA-CNN-BiGRU鲸鱼算法优化卷积双向门控循环单元数据分类预测
% The Whale Optimization Algorithm
function [Best_Cost,Best_pos,curve]=WOA(pop,Max_iter,lb,ub,dim,fobj)% initialize position vector and score for the leader
Best_pos=zeros(1,dim);
Best_Cost=inf; %change this to -inf for maximization problems%Initialize the positions of search agents
Positions=initialization(pop,dim,ub,lb);curve=zeros(1,Max_iter);t=0;% Loop counter% Main loop
while t<Max_iterfor i=1:size(Positions,1)% Return back the search agents that go beyond the boundaries of the search spaceFlag4ub=Positions(i,:)>ub;Flag4lb=Positions(i,:)<lb;Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;% Calculate objective function for each search agentfitness=fobj(Positions(i,:));% Update the leaderif fitness<Best_Cost % Change this to > for maximization problemBest_Cost=fitness; % Update alphaBest_pos=Positions(i,:);endenda=2-t*((2)/Max_iter); % a decreases linearly fron 2 to 0 in Eq. (2.3)% a2 linearly dicreases from -1 to -2 to calculate t in Eq. (3.12)a2=-1+t*((-1)/Max_iter);% Update the Position of search agents for i=1:size(Positions,1)r1=rand(); % r1 is a random number in [0,1]r2=rand(); % r2 is a random number in [0,1]A=2*a*r1-a;  % Eq. (2.3) in the paperC=2*r2;      % Eq. (2.4) in the paperb=1;               %  parameters in Eq. (2.5)l=(a2-1)*rand+1;   %  parameters in Eq. (2.5)p = rand();        % p in Eq. (2.6)for j=1:size(Positions,2)if p<0.5   if abs(A)>=1rand_leader_index = floor(pop*rand()+1);X_rand = Positions(rand_leader_index, :);D_X_rand=abs(C*X_rand(j)-Positions(i,j)); % Eq. (2.7)Positions(i,j)=X_rand(j)-A*D_X_rand;      % Eq. (2.8)elseif abs(A)<1D_Leader=abs(C*Best_pos(j)-Positions(i,j)); % Eq. (2.1)Positions(i,j)=Best_pos(j)-A*D_Leader;      % Eq. (2.2)endelseif p>=0.5distance2Leader=abs(Best_pos(j)-Positions(i,j));% Eq. (2.5)Positions(i,j)=distance2Leader*exp(b.*l).*cos(l.*2*pi)+Best_pos(j);endendendt=t+1;curve(t)=Best_Cost;[t Best_Cost]
end

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

相关文章:

分类预测 | MATLAB实现WOA-CNN-BiGRU鲸鱼算法优化卷积双向门控循环单元数据分类预测

分类预测 | MATLAB实现WOA-CNN-BiGRU鲸鱼算法优化卷积双向门控循环单元数据分类预测 目录 分类预测 | MATLAB实现WOA-CNN-BiGRU鲸鱼算法优化卷积双向门控循环单元数据分类预测分类效果基本描述模型描述程序设计参考资料 分类效果 基本描述 1.Matlab实现WOA-CNN-BiGRU多特征分类…...

mac使用squidMan设置代理服务器

1&#xff0c;下载squidMan http://squidman.net/squidman/ 2, 配置SquidMan->Preference 3, mac命令窗口配置 export http_proxy export https_porxy 4&#xff0c;客户端配置&#xff08;centos虚拟机&#xff09; export http_proxyhttp://服务器ip:8080 export https…...

大数据Flink(七十八):SQL 的水印操作(Watermark)

文章目录 SQL 的水印操作(Watermark) 一、为什么要有 WaterMark...

【Linux】Qt Remote之Remote开发环境搭建填坑小记

总体思路 基于WSL2&#xff08;Ubuntu 22.04 LTS&#xff09;原子Alpha开发板进行Qt开发实验&#xff0c;基于Win11通过vscode remote到WSL2&#xff0c;再基于WSL2通过Qt 交叉编译&#xff0c;并通过sshrsync远程到开发板&#xff0c;构建起开发工具链。 Step1 基于Win11通过…...

ATFX汇市:离岸人民币大幅升值,昨日盘中跌破7.3关口

ATFX汇市&#xff1a;美国CPI数据即将公布之际&#xff0c;周一美元指数大跌&#xff0c;带动离岸人民币升值0.85%&#xff0c;实现3月14日以来的最大单日升值幅度&#xff0c;当日汇率&#xff08;USDCNH&#xff09;最低触及7.292&#xff0c;突破7.3000关口。消息面上&#…...

Spring Boot 配置 Knife4j

一、引入 maven <!-- 引入 knife4j 文档--> <dependency> <groupId>com.github.xiaoymin</groupId> <artifactId>knife4j-openapi2-spring-boot-starter</artifactId> <version>4.1.0</version> </dependency>二…...

Java项目中遇到uv坐标如何转换成经纬度坐标

将UV坐标&#xff08;通常指平面坐标&#xff0c;如二维地图坐标&#xff09;转换为经纬度坐标&#xff08;地理坐标&#xff09;通常需要知道一个参考点的经纬度坐标&#xff0c;以及两者之间的比例关系。这是因为UV坐标通常用于在地图上绘制图形或标记点&#xff0c;而经纬度…...

std : : unordered_map 、 std : : unordered_set

一.简介 std::unordered_map 是C标准库中的一种关联容器&#xff0c;它提供了一种用于存储键-值对的数据结构&#xff0c;其中键是唯一的&#xff0c;且不会按特定顺序排序。与 std::map 不同&#xff0c;std::unordered_map 使用哈希表作为其底层数据结构&#xff0c;因此它具…...

Python解释器和Pycharm的傻瓜式安装部署

给我家憨憨写的python教程 有惊喜等你找噢 ——雁丘 Python解释器Pycharm的安装部署 关于本专栏一 Python解释器1.1 使用命令提示符编写Python程序1.2 用记事本编写Python程序 二 Pycharm的安装三 Pycharm的部署四 Pycharm基础使用技巧4.1 修改主题颜色4.2 修改字体4.3 快速修…...

14 Python使用网络

概述 在上一节&#xff0c;我们介绍了如何在Python中使用Json&#xff0c;包括&#xff1a;Json序列化、Json反序列化、读Json文件、写Json文件、将类对象转换为Json、将Json转换为类对象等内容。在这一节&#xff0c;我们将介绍如何在Python中使用网络。Python网络编程覆盖的范…...

AI ChatGPT 各大开放平台一览 大模型 Prompt

AI ChatGPT 各大开放平台一览 大模型 Prompt 国内 百度 ERNIE Bot 文心一言阿里巴巴 通义千问腾讯 Hunyuan BOT 混元 &#xff08;暂未发布&#xff09;华为 盘古旷视 ChatSpot科大讯飞 讯飞星火网易 子曰&#xff08;暂未发布&#xff09;京东 言犀奇安信 Q-GPT商汤科技 商量S…...

全球汽车安全气囊芯片总体规模分析

安全气囊系统是一种被动安全性的保护系统&#xff0c;它与座椅安全带配合使用&#xff0c;可以为乘员提供有效的防撞保护。在汽车相撞时&#xff0c;汽车安全气囊可使头部受伤率减少25%&#xff0c;面部受伤率减少80%左右。 汽车安全气囊芯片是整个系统的控制核心&#xff0c;并…...

USB适配器应用芯片 国产GP232RL软硬件兼容替代FT232RL DPU02直接替代CP2102

USB适配器&#xff0c;是英文Universal Serial Bus(通用串行总线)的缩写&#xff0c;而其中文简称为“通串线”&#xff0c;是一个外部总线标准&#xff0c;用于规范电脑与外部设备的连接和通讯。是应用在PC领域的接口技术&#xff0c; 移动PC由于没有电池&#xff0c;电源适配…...

卫星物联网生态建设全面加速,如何抓住机遇?

当前&#xff0c;卫星通信无疑是行业最热门的话题之一。近期发布的华为Mate 60 Pro“向上捅破天”技术再次升级&#xff0c;成为全球首款支持卫星通话的大众智能手机&#xff0c;支持拨打和接听卫星电话&#xff0c;还可自由编辑卫星消息。 据悉&#xff0c;华为手机的卫星通话…...

SAP GUI 8.0 SMARTFORMS 使用SCR LEGACY TEXT EDITOR GUI8.00 禁用MSWORD

Smartforms使用WORD作为编辑器是很痛苦的一个事情&#xff0c;不支持拖拽&#xff0c;还很慢&#xff0c;各种不习惯&#xff0c;总之是非常的不舒服&#xff0c;能导致失眠。 在S/4以前的系统&#xff0c;可以使用TCODE I18N或者程序RSCPSETEDITOR或者暴力党直接改表TCP0I来…...

【SpringMVC】JSR303与拦截器的使用

文章目录 一、JSR3031.1 JSR303是什么1.2 JSR 303的好处包括1.3 常用注解1.4 实例1.4.1 导入JSR303依赖1.4.2 规则配置1.4.3 编写校验方法1.4.4 编写前端 二、拦截器2.1 拦截器是什么2.2 拦截器与过滤器的区别2.3.应用场景2.4 快速入门2.5.拦截器链2.6 登录拦截权限案例2.6.1 L…...

Qt案例-编译阿里云OSS对象存储C++ SDK源码,并进行简单下载,上传数据,显示进度等相关功能

项目中用到了阿里云OSS对象存储来保存数据&#xff0c;由于以前没用过这个库&#xff0c;就下载了C版的sdk源码重新编译了一次&#xff0c;并使用Qt调用&#xff1b;不得不说这可能是我编译源码最轻松的一次。 目录标题 简述OSS图形化管理工具编译源码Qt 添加引用常用 Endpoint…...

JAVA异常输出到控制台

在处理异常时&#xff0c;可以根据情况选择使用 e.getMessage()、e.toString() 或 e.printStackTrace() 来获得或打印异常相关信息。 e.printStackTrace() 是 Java 中用于打印异常堆栈跟踪信息的方法。当出现异常时&#xff0c;可以调用 e.printStackTrace() 将异常信息输出到控…...

html5学习笔记23-vue 简略学习,未完

https://www.runoob.com/vue3/vue3-tutorial.html Vue.js是一套构建用户界面的渐进式框架。Vue 只关注视图层&#xff0c; 采用自底向上增量开发的设计。 https://unpkg.com/vuenext https://unpkg.com/vue3.2.36/dist/vue.global.js <script src"https://cdn.staticf…...

【Fiddler】mac m1 机器上使用 fiddler 抓取接口

mac m1 机器上使用 fiddler 抓取接口&#xff08;非虚拟机模式&#xff09; author: jwensh date:2023.09.12 文章目录 mac m1 机器上使用 fiddler 抓取接口&#xff08;非虚拟机模式&#xff09;1. 环境准备2. 进行配置3. 使用情况 1. 环境准备 想要抓取 mac 上浏览器的接口&a…...

【网络】每天掌握一个Linux命令 - iftop

在Linux系统中&#xff0c;iftop是网络管理的得力助手&#xff0c;能实时监控网络流量、连接情况等&#xff0c;帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...

CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型

CVPR 2025 | MIMO&#xff1a;支持视觉指代和像素对齐的医学视觉语言模型 论文信息 标题&#xff1a;MIMO: A medical vision language model with visual referring multimodal input and pixel grounding multimodal output作者&#xff1a;Yanyuan Chen, Dexuan Xu, Yu Hu…...

PHP和Node.js哪个更爽?

先说结论&#xff0c;rust完胜。 php&#xff1a;laravel&#xff0c;swoole&#xff0c;webman&#xff0c;最开始在苏宁的时候写了几年php&#xff0c;当时觉得php真的是世界上最好的语言&#xff0c;因为当初活在舒适圈里&#xff0c;不愿意跳出来&#xff0c;就好比当初活在…...

Cesium1.95中高性能加载1500个点

一、基本方式&#xff1a; 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...

【解密LSTM、GRU如何解决传统RNN梯度消失问题】

解密LSTM与GRU&#xff1a;如何让RNN变得更聪明&#xff1f; 在深度学习的世界里&#xff0c;循环神经网络&#xff08;RNN&#xff09;以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而&#xff0c;传统RNN存在的一个严重问题——梯度消失&#…...

大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计

随着大语言模型&#xff08;LLM&#xff09;参数规模的增长&#xff0c;推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长&#xff0c;而KV缓存的内存消耗可能高达数十GB&#xff08;例如Llama2-7B处理100K token时需50GB内存&a…...

重启Eureka集群中的节点,对已经注册的服务有什么影响

先看答案&#xff0c;如果正确地操作&#xff0c;重启Eureka集群中的节点&#xff0c;对已经注册的服务影响非常小&#xff0c;甚至可以做到无感知。 但如果操作不当&#xff0c;可能会引发短暂的服务发现问题。 下面我们从Eureka的核心工作原理来详细分析这个问题。 Eureka的…...

技术栈RabbitMq的介绍和使用

目录 1. 什么是消息队列&#xff1f;2. 消息队列的优点3. RabbitMQ 消息队列概述4. RabbitMQ 安装5. Exchange 四种类型5.1 direct 精准匹配5.2 fanout 广播5.3 topic 正则匹配 6. RabbitMQ 队列模式6.1 简单队列模式6.2 工作队列模式6.3 发布/订阅模式6.4 路由模式6.5 主题模式…...

QT3D学习笔记——圆台、圆锥

类名作用Qt3DWindow3D渲染窗口容器QEntity场景中的实体&#xff08;对象或容器&#xff09;QCamera控制观察视角QPointLight点光源QConeMesh圆锥几何网格QTransform控制实体的位置/旋转/缩放QPhongMaterialPhong光照材质&#xff08;定义颜色、反光等&#xff09;QFirstPersonC…...

Web后端基础(基础知识)

BS架构&#xff1a;Browser/Server&#xff0c;浏览器/服务器架构模式。客户端只需要浏览器&#xff0c;应用程序的逻辑和数据都存储在服务端。 优点&#xff1a;维护方便缺点&#xff1a;体验一般 CS架构&#xff1a;Client/Server&#xff0c;客户端/服务器架构模式。需要单独…...