AB测试结果分析
一、假设检验
根据样本(小流量)的观测结果,拒绝或接受关于总体(全部流量)的某个假设,称为假设检验。
假设检验的基本依据是小概率事件原理(小概率事件几乎不发生),如果小概率事件发生了,则有充分理由推翻原假设,否则接受原假设,检验的具体过程是:
-
首先假定原假设成立,并寻找一个原假设成立条件下的发生概率微小的事件,称为检验事件,对应的统计量称为检验统计量
-
其次是采集样本
-
最后观测步骤 1 所定义的小概率事件是否发生
-
- 若小概率事件发生,则拒绝原假设,接受备用假设
- 若小搞错了时间未发生,则接受原假设,拒绝备用假设
具体到AB实验中,涉及实验组和对照组组两个总体,假设实验的某个目标指标满足正态分布,实验组和对照组分别记为 X ∼ N ( μ 1 , σ 1 2 ) , Y ∼ N ( μ 2 , σ 2 2 ) X\sim \mathcal{N}(\mu_1, \sigma_1^2), Y \sim \mathcal{N}(\mu_2, \sigma_2^2) X∼N(μ1,σ12),Y∼N(μ2,σ22),常见检验问题是判断实验组对比对照组是否有效,具体又分为几类情况:
I. 原假设 H 0 : μ 1 ≤ μ 2 H_0: \mu_1\le \mu_2 H0:μ1≤μ2实验组对比对照组负向或无效;备用假设 H 1 : μ 1 > μ 2 H_1:\mu_1 > \mu_2 H1:μ1>μ2,实验组对比对照组正向
II. 原假设 H 0 : μ 1 ≥ μ 2 H_0:\mu_1\ge \mu_2 H0:μ1≥μ2实验对比对照组正向或无效;备用假设 H 1 : μ 1 < μ 2 H_1:\mu_1 < \mu_2 H1:μ1<μ2,实验组对比对照组负向
III. 原假设 H 0 : μ 1 = μ 2 H_0:\mu_1= \mu_2 H0:μ1=μ2实验对比对照组无效;备用假设 H 1 : μ 1 ≠ μ 2 H_1:\mu_1 \ne \mu_2 H1:μ1=μ2,实验有效,但未区分正向还是负向效果
与之等价的三个假设检验问题是:
I. 原假设 H 0 : μ 1 − μ 2 ≤ 0 H_0:\mu_1 - \mu_2 \le 0 H0:μ1−μ2≤0;备用假设 H 1 : μ 1 − μ 2 > 0 H_1:\mu_1 - \mu_2 > 0 H1:μ1−μ2>0
II. 原假设 H 0 : μ 1 − μ 2 ≥ 0 H_0:\mu_1- \mu_2\ge 0 H0:μ1−μ2≥0;备用假设 H 1 : μ 1 − μ 2 < 0 H_1:\mu_1 - \mu_2< 0 H1:μ1−μ2<0
III. 原假设 H 0 : μ 1 − μ 2 = 0 H_0:\mu_1- \mu_2 = 0 H0:μ1−μ2=0;备用假设 H 1 : μ 1 − μ 2 ≠ 0 H_1:\mu_1 - \mu_2 \ne 0 H1:μ1−μ2=0
如何寻找一个事件,满足在原假设成立条件下发生的概率微小 ?发生概率多小能满足要求 ?
第二个问题比较好回答,一般取 0.01 或 0.05,记为 α = 0.01 ∣ 0.05 \alpha = 0.01|0.05 α=0.01∣0.05,称为检验的显著性。第一个问题需要费一番推导。
以假设检验问题 I 为例,实验收集的样本记为 { X 1 , X 2 . . . , X n } , { Y 1 , Y 2 , . . . , Y 3 } \{X_1, X_2...,X_n\}, \{Y_1, Y_2, ..., Y_3\} {X1,X2...,Xn},{Y1,Y2,...,Y3}, 样本均值 X ‾ = ∑ i X i n , Y ‾ = ∑ i Y I m \overline{X} = \frac{\sum_i X_i}{n},\overline{Y} = \frac{\sum_iY_I}{m} X=n∑iXi,Y=m∑iYI分别总体均值 μ 1 , μ 2 \mu_1, \mu_2 μ1,μ2的无偏相合估计,样本均值之差 X ‾ − Y ‾ \overline{X}-\overline{Y} X−Y是总体均值差 μ 1 − μ 2 \mu_1-\mu_2 μ1−μ2的无偏相合估计,因此样本均值之差 X ‾ − Y ‾ \overline{X}-\overline{Y} X−Y大概率是分布在 μ 1 − μ 2 \mu_1-\mu_2 μ1−μ2附近,直观思考,原假设成立的条件下, X ‾ − Y ‾ \overline{X}-\overline{Y} X−Y大概率落在非正数附近, X ‾ − Y ‾ \overline{X}-\overline{Y} X−Y取值为较大的正数的概率较小,如下图:

因此假设检验问题 I 原假设成立条件下的小概率事件定义为:$ {\overline{X}-\overline{Y} > c}$
下面需要做的是在给定小概率值 α \alpha α(也就是检验的显著性)的条件下确定阈值 c ,也就是满足不等式 P ( X ‾ − Y ‾ > c ) ≤ α P(\overline{X}-\overline{Y} > c) \le \alpha P(X−Y>c)≤α的实数 c.
由中心极限定理得到:
X ‾ ∼ N ( μ 1 , σ 1 2 / n ) Y ‾ ∼ N ( μ 2 , σ 2 2 / m ) \overline{X} \sim \mathcal{N}(\mu_1, \sigma_1^2/n)\\ \overline{Y} \sim \mathcal{N}(\mu_2, \sigma_2^2/m) X∼N(μ1,σ12/n)Y∼N(μ2,σ22/m)
为了确定阈值 c,需要分几种情况:
- 总体方差 σ 1 2 , σ 2 2 \sigma_1^2, \sigma_2^2 σ12,σ22已知
- 总体方差 σ 1 2 = σ 2 2 = σ 2 \sigma_1^2 = \sigma_2^2 = \sigma^2 σ12=σ22=σ2,且未知
- 总体方差 σ 1 2 ≠ σ 2 2 \sigma_1^2\ne\sigma_2^2 σ12=σ22,且未知
- 总体方差 σ 1 2 ≠ σ 2 2 \sigma_1^2\ne \sigma_2^2 σ12=σ22,且未知,大样本场景
首先考虑最简单的情况1, 由独立正态分布特性得到:
X ‾ − Y ‾ ∼ N ( μ 1 − μ 2 , σ 1 2 n + σ 2 2 m ) \overline{X}-\overline{Y} \sim \mathcal{N}(\mu_1 - \mu_2, \frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m} ) X−Y∼N(μ1−μ2,nσ12+mσ22)
( X ‾ − Y ‾ ) − ( μ 1 − μ 2 ) σ 1 2 n + σ 2 2 m ∼ N ( 0 , 1 ) \frac{(\overline{X}-\overline{Y}) - (\mu_1-\mu_2)}{\sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}}} \sim \mathcal{N}(0, 1) nσ12+mσ22(X−Y)−(μ1−μ2)∼N(0,1): 正态分布性质
P ( ( X ‾ − Y ‾ ) − ( μ 1 − μ 2 ) σ 1 2 n + σ 2 2 m > z α ) = α P(\frac{(\overline{X}-\overline{Y}) - (\mu_1-\mu_2)}{\sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}}} > z_{\alpha}) =\alpha P(nσ12+mσ22(X−Y)−(μ1−μ2)>zα)=α : 由正态分布的上分位z_{\alpha}数定义
P H 0 ( X ‾ − Y ‾ σ 1 2 n + σ 2 2 m − μ 1 − μ 2 σ 1 2 n + σ 2 2 m > z α ) = α P_{H_0}(\frac{\overline{X}-\overline{Y}}{\sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}}} - \frac{\mu_1-\mu_2}{\sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}}} >z_{\alpha}) = \alpha PH0(nσ12+mσ22X−Y−nσ12+mσ22μ1−μ2>zα)=α
P H 0 ( X ‾ − Y ‾ σ 1 2 n + σ 2 2 m > z α + μ 1 − μ 2 σ 1 2 n + σ 2 2 m ) = α P_{H_0}(\frac{\overline{X}-\overline{Y}}{\sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}}} >z_{\alpha} + \frac{\mu_1-\mu_2}{\sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}}}) = \alpha PH0(nσ12+mσ22X−Y>zα+nσ12+mσ22μ1−μ2)=α
P H 0 ( X ‾ − Y ‾ σ 1 2 n + σ 2 2 m > z α ) ≤ P H 0 ( X ‾ − Y ‾ σ 1 2 n + σ 2 2 m > z α + μ 1 − μ 2 σ 1 2 n + σ 2 2 m ) = α P_{H_0}(\frac{\overline{X}-\overline{Y}}{\sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}}} >z_{\alpha}) \le P_{H_0}(\frac{\overline{X}-\overline{Y}}{\sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}}} >z_{\alpha} + \frac{\mu_1-\mu_2}{\sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}}}) = \alpha PH0(nσ12+mσ22X−Y>zα)≤PH0(nσ12+mσ22X−Y>zα+nσ12+mσ22μ1−μ2)=α: 由事件和子事件概率关系
P H 0 ( X ‾ − Y ‾ > z α ∗ σ 1 2 n + σ 2 2 m ) ≤ α P_{H_0}(\overline{X}-\overline{Y} >z_{\alpha} * \sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}}) \le \alpha PH0(X−Y>zα∗nσ12+mσ22)≤α
c = z α ∗ σ 1 2 n + σ 2 2 m c = z_{\alpha} * \sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}} c=zα∗nσ12+mσ22
概念整理:
-
检验显著性: α \alpha α
-
检验统计量:$Z= \overline{X}-\overline{Y} $
-
拒绝域: W I = { Z > z α ∗ σ 1 2 n + σ 2 2 m } W_I = \{ Z >z_{\alpha} * \sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}}\} WI={Z>zα∗nσ12+mσ22}
因为 { X ‾ − Y ‾ > z α ∗ σ 1 2 n + σ 2 2 m } \{\overline{X} - \overline{Y} > z_{\alpha} * \sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}}\} {X−Y>zα∗nσ12+mσ22}与 { X ‾ − Y ‾ σ 1 2 n + σ 2 2 m > z α } \{ \frac{\overline{X} - \overline{Y}}{\sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}}} >z_{\alpha} \} {nσ12+mσ22X−Y>zα}是等价事件,因此检验问题 1 经常采用的
- 检验统计量是 u = X ‾ − Y ‾ σ 1 2 n + σ 2 2 m u = \frac{\overline{X} - \overline{Y}}{\sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}}} u=nσ12+mσ22X−Y
- 拒绝域为 W I = { u > z α } W_I = \{u > z_{\alpha}\} WI={u>zα}
p-value:
以检验问题 I 为例

在一个假设检验问题中,拒绝原假设的最小显著性水平成为 p 值。
X ‾ − Y ‾ ∼ N ( μ 1 − μ 2 , σ 1 2 n + σ 2 2 m ) \overline{X}-\overline{Y} \sim \mathcal{N}(\mu_1 - \mu_2, \frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m} ) X−Y∼N(μ1−μ2,nσ12+mσ22)
p = P ( T > X ‾ − T ‾ ) p= P(T > \overline{X} - \overline{T}) p=P(T>X−T)
利用p值和给定的显著性水平 α \alpha α:
- 若 α ≥ p \alpha \ge p α≥p,则拒绝原假设
- 若 α < p \alpha < p α<p,则接受原假设
p 值越小,拒绝原假设的理由越充分。
检验错误:
原假设实际成立但被拒绝的错误,称为 I 类错误,对应AB实验中推全了一个没有效果的实验,错误发生的概率记为 α \alpha α
原假设实际不成立但被接受的错误,称为 II 类错误,对应AB实验中一个有效果的实验没被推全,错误发生概率记为 β \beta β.
以上的检验过程保证原假设成立但被推翻的概率小于\alpha.
样本量一定的情况下,无法同事降低I类错误和II类错误的概率,一般通过保证 I 类错误不高于一个阈值的情况下,通过增大样本量,控制II错误概率。
最小样本量:
以检验问题 I 为例,考察接受原假设的概率:
P ( X ‾ − Y ‾ σ 1 2 n + σ 2 2 m < z α ) = P ( ( X ‾ − Y ‾ ) − ( μ 1 − μ 2 ) σ 1 2 n + σ 2 2 m < z α − μ 1 − μ 2 σ 1 2 n + σ 2 2 m ) P(\frac{\overline{X}-\overline{Y}}{\sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}}} < z_{\alpha}) = P(\frac{(\overline{X}-\overline{Y}) - (\mu_1-\mu_2)}{\sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}}} < z_{\alpha} - \frac{\mu_1-\mu_2}{\sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}}} ) P(nσ12+mσ22X−Y<zα)=P(nσ12+mσ22(X−Y)−(μ1−μ2)<zα−nσ12+mσ22μ1−μ2)
( X ‾ − Y ‾ ) − ( μ 1 − μ 2 ) σ 1 2 n + σ 2 2 m ∼ N ( 0 , 1 ) \frac{(\overline{X}-\overline{Y}) - (\mu_1-\mu_2)}{\sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}}} \sim \mathcal{N}(0, 1) nσ12+mσ22(X−Y)−(μ1−μ2)∼N(0,1)
P ( ( X ‾ − Y ‾ ) − ( μ 1 − μ 2 ) σ 1 2 n + σ 2 2 m < z α − μ 1 − μ 2 σ 1 2 n + σ 2 2 m ) = Φ ( z α − μ 1 − μ 2 σ 1 2 n + σ 2 2 m ) < β P(\frac{(\overline{X}-\overline{Y}) - (\mu_1-\mu_2)}{\sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}}} < z_{\alpha} - \frac{\mu_1-\mu_2}{\sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}}}) = \Phi(z_{\alpha} - \frac{\mu_1-\mu_2}{\sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}}}) < \beta P(nσ12+mσ22(X−Y)−(μ1−μ2)<zα−nσ12+mσ22μ1−μ2)=Φ(zα−nσ12+mσ22μ1−μ2)<β
z α − μ 1 − μ 2 σ 1 2 n + σ 2 2 m < z 1 − β z_{\alpha} - \frac{\mu_1-\mu_2}{\sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}}} < z_{1 - \beta} zα−nσ12+mσ22μ1−μ2<z1−β
假设 m = n
n > ( z α + z β ) σ 1 2 + σ 2 2 μ 1 − μ 2 ( 1 ) \sqrt{n} > \frac{(z_\alpha + z_\beta)\sqrt{\sigma_1^2 + \sigma^2_2}}{\mu_1 - \mu_2} \space\space\space\space\space\space(1) n>μ1−μ2(zα+zβ)σ12+σ22 (1)
启发:
-
指标总体的方差越大,需要的最小样本量越大
-
控制错误概率越低,需要的最小样本量越大,一般 α = 0.01 、 0.05 , β = 0.2 \alpha = 0.01、0.05, \beta = 0.2 α=0.01、0.05,β=0.2
-
实验组相对对照组提升 μ 1 − μ 2 \mu_1 - \mu_2 μ1−μ2越大,需要的样本量越小;提升越小,需要的最小样本量越大
-
- 当 μ 1 \mu_1 μ1从左侧无限接近 μ 2 \mu_2 μ2,所需要的最小样本量接近无限大
-
实验最短观测周期:T = ( z α + z β ) σ 1 2 + σ 2 2 μ 1 − μ 2 \frac{(z_\alpha + z_\beta)\sqrt{\sigma_1^2 + \sigma^2_2}}{\mu_1 - \mu_2} μ1−μ2(zα+zβ)σ12+σ22 / 单位时长累积样本数量
第2种情况,样本方差未知但相等:
s x 2 = 1 n − 1 ∑ ( x i − x ‾ ) 2 s y 2 = 1 m − 1 ∑ ( y i − y ‾ ) 2 s w 2 = ( n − 1 ) s x 2 + ( m − 1 ) s y 2 n + m − 2 s_x^2 = \frac{1}{n-1}\sum (x_i - \overline{x})^2 \\ s_y^2 = \frac{1}{m-1}\sum(y_i - \overline{y})^2 \\ s_w^2 = \frac{(n-1)s_x^2 + (m-1)s_y^2}{n+m-2} sx2=n−11∑(xi−x)2sy2=m−11∑(yi−y)2sw2=n+m−2(n−1)sx2+(m−1)sy2
( X ‾ − Y ‾ ) − ( μ 1 − μ 2 ) s w 1 n + 1 m ∼ t ( n + m − 2 ) \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{s_w\sqrt{\frac{1}{n} + \frac{1}{m}}} \sim t(n + m - 2) swn1+m1(X−Y)−(μ1−μ2)∼t(n+m−2)
-
检验统计量: t = X ‾ − Y ‾ s w 1 n + 1 m t = \frac{\overline{X} - \overline{Y}}{s_w\sqrt{\frac{1}{n} + \frac{1}{m}}} t=swn1+m1X−Y
-
拒绝域: W I = { t > t 1 − α ( n + m − 2 ) } W_I = \{ t > t_{1-\alpha}(n + m- 2) \} WI={t>t1−α(n+m−2)}
第3中情况,样本样本方差未知,但不等
-
检验统计量: t = X ‾ − Y ‾ s x 2 n + s y 2 m t = \frac{\overline{X} - \overline{Y}}{\sqrt{\frac{s^2_x}{n} + \frac{s_y^2}{m}}} t=nsx2+msy2X−Y
-
拒绝域: W I = { t > t 1 − α ( l ) } l = ( s x 2 n + s y 2 m ) 2 / [ s x 4 n 2 ( n − 1 ) + s y 4 m 2 ( m − 1 ) ] W_I = \{ t > t_{1-\alpha}(l) \} \\ l = (\frac{s_x^2}{n} + \frac{s_y^2}{m})^2/[\frac{s_x^4}{n^2(n-1)} +\frac{s_y^4}{m^2(m-1)} ] WI={t>t1−α(l)}l=(nsx2+msy2)2/[n2(n−1)sx4+m2(m−1)sy4]
第4种情况,大样本情况
- 检验统计量: u = X ‾ − Y ‾ s x 2 n + s y 2 m u = \frac{\overline{X} - \overline{Y}}{\sqrt{\frac{s^2_x}{n} + \frac{s_y^2}{m}}} u=nsx2+msy2X−Y
- 拒绝域: W I = { u > z α } W_I = \{u > z_{\alpha}\} WI={u>zα}
二、区间估计
点估计不能提供估计参数的估计误差大小,所以点估计主要用在定性分析的场景,或在对总体参数要求不精确时使用,而在需要用精确总体参数的数据进行决策时则很少使用,这种场景主要使用区间估计。
第1种情况,总体方差已知:
( X ‾ − Y ‾ ) − ( μ 1 − μ 2 ) σ 1 2 n + σ 2 2 m ∼ N ( 0 , 1 ) \frac{(\overline{X}-\overline{Y}) - (\mu_1-\mu_2)}{\sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}}} \sim \mathcal{N}(0, 1) nσ12+mσ22(X−Y)−(μ1−μ2)∼N(0,1)
P ( − z α / 2 ≤ ( X ‾ − Y ‾ ) − ( μ 1 − μ 2 ) σ 1 2 n + σ 2 2 m ≤ z α / 2 ) = 1 − α P(-z_{\alpha/2}\le\frac{(\overline{X}-\overline{Y}) - (\mu_1-\mu_2)}{\sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}}} \le z_{\alpha/2}) = 1- \alpha P(−zα/2≤nσ12+mσ22(X−Y)−(μ1−μ2)≤zα/2)=1−α
P ( X ‾ − Y ‾ − z α / 2 ∗ σ 1 2 n + σ 2 2 m ≤ μ 1 − μ 2 ≤ X ‾ − Y ‾ + z α / 2 ∗ σ 1 2 n + σ 2 2 m ) = 1 − α P(\overline{X}-\overline{Y} - z_{\alpha/2} * \sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}}\le \mu_1-\mu_2\le \overline{X}-\overline{Y} + z_{\alpha/2} * \sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}}) = 1 - \alpha P(X−Y−zα/2∗nσ12+mσ22≤μ1−μ2≤X−Y+zα/2∗nσ12+mσ22)=1−α
- μ 1 − μ 2 \mu_1 - \mu_2 μ1−μ2的 1 − α 1 -\alpha 1−α置信区间 [ X ‾ − Y ‾ − z α / 2 ∗ σ 1 2 n + σ 2 2 m , X ‾ − Y ‾ + z α / 2 ∗ σ 1 2 n + σ 2 2 m ] [\overline{X}-\overline{Y} - z_{\alpha/2} * \sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}}, \overline{X}-\overline{Y} + z_{\alpha/2} * \sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}}] [X−Y−zα/2∗nσ12+mσ22,X−Y+zα/2∗nσ12+mσ22]
第2种情况,总体方差未知但相等:
- μ 1 − μ 2 \mu_1 - \mu_2 μ1−μ2的 1 − α 1 -\alpha 1−α置信区间 [ X ‾ − Y ‾ − t 1 − α / 2 ( n + m − 2 ) ∗ s w ∗ 1 n + 1 m , X ‾ − Y ‾ + t 1 − α / 2 ( n + m − 2 ) ∗ s w ∗ 1 n + 1 m ] [\overline{X}-\overline{Y} - t_{1-\alpha/2}(n+m-2)*s_w * \sqrt{\frac{1}{n} + \frac{1}{m}}, \overline{X}-\overline{Y} + t_{1-\alpha/2}(n+m-2) *s_w* \sqrt{\frac{1}{n} + \frac{1}{m}}] [X−Y−t1−α/2(n+m−2)∗sw∗n1+m1,X−Y+t1−α/2(n+m−2)∗sw∗n1+m1]
第3种情况:
- μ 1 − μ 2 \mu_1 - \mu_2 μ1−μ2的 1 − α 1 -\alpha 1−α置信区间 [ X ‾ − Y ‾ − t 1 − α / 2 ( 1 ) ∗ s x 2 n + s y 2 m , X ‾ − Y ‾ + t 1 − α / 2 ( l ) ∗ s x 2 n + s y 2 m ] [\overline{X}-\overline{Y} - t_{1-\alpha/2}(1) * \sqrt{\frac{s_x^2}{n} + \frac{s_y^2}{m}}, \overline{X}-\overline{Y} + t_{1-\alpha/2}(l) * \sqrt{\frac{s_x^2}{n} + \frac{s_y^2}{m}}] [X−Y−t1−α/2(1)∗nsx2+msy2,X−Y+t1−α/2(l)∗nsx2+msy2]
第4种情况:
- μ 1 − μ 2 \mu_1 - \mu_2 μ1−μ2的 1 − α 1 -\alpha 1−α置信区间 [ X ‾ − Y ‾ − u 1 − α / 2 ∗ s x 2 n + s y 2 m , X ‾ − Y ‾ + u 1 − α / 2 ∗ s x 2 n + s y 2 m ] [\overline{X}-\overline{Y} - u_{1-\alpha/2} * \sqrt{\frac{s_x^2}{n} + \frac{s_y^2}{m}}, \overline{X}-\overline{Y} + u_{1-\alpha/2} * \sqrt{\frac{s_x^2}{n} + \frac{s_y^2}{m}}] [X−Y−u1−α/2∗nsx2+msy2,X−Y+u1−α/2∗nsx2+msy2]
三、区间估计与假设检验的关系
- 若检验显著水平 α \alpha α 拒绝域为W,则对立事件 W ‾ \overline{W} W就是相应参数的 1 − α 1 - \alpha 1−α置信区间
- W ‾ \overline{W} W为相应参数 1 − α 1 - \alpha 1−α置信区间,则对立事件W为检验显著水平 α \alpha α的拒绝域
四、更多
两个二项分布指标的分析
。。。
相关文章:
AB测试结果分析
一、假设检验 根据样本(小流量)的观测结果,拒绝或接受关于总体(全部流量)的某个假设,称为假设检验。 假设检验的基本依据是小概率事件原理(小概率事件几乎不发生),如果…...
Python模块和包:sys模块、os模块和变量函数的使用
文章目录 模块(module)引入外部模块引入部分内容包 (package)示例代码开箱即用sys模块sys.argvsys.modulessys.pathsys.platformsys.exit() os模块os.environos.system()os模块中的变量、函数和类 测试代码模块中的变量和函数的使用 总结:pyt…...
计算机软件工程毕业设计题目推荐
文章目录 0 简介1 如何选题2 最新软件工程毕设选题3 最后 0 简介 学长搜集分享最新的软件工程业专业毕设选题,难度适中,适合作为毕业设计,大家参考。 学长整理的题目标准: 相对容易工作量达标题目新颖 1 如何选题 最近非常多的…...
嵌入式学习笔记(25)串口通信的基本原理
三根通信线:Tx Rx GND (1)任何通信都要有信息作为传输载体,或者有线的或则无线的。 (2)串口通信时有线通信,是通过串口线来通信的。 (3)串口通信最少需要2根ÿ…...
c++学习第十三
1)循环引用的案例及解决办法: #include <iostream> #include <memory> using namespace std; class A;class B { public:B(){cout<<"B constructor---"<<endl;}~B(){cout<<"B deconstructor----"<<endl;}std::weak_…...
java复习-线程的同步和死锁
线程的同步和死锁 同步问题引出 当多个线程访问同一资源时,会出现不同步问题。比如当票贩子A(线程A)已经通过了“判断”,但由于网络延迟,暂未修改票数的间隔时间内,票贩子B(线程B)…...
Qt指示器设置
目录 1. 样式设置 2. 行为设置 3. 交互设置 创建一个进度指示器控件 在Qt中设置指示器(Indicator)的外观和行为通常需要操作相关部件的属性和样式表。以下是如何在Qt中设置指示器的一些常见方式: 1. 样式设置 你可以使用样式表…...
计算机网络第四节 数据链路层
一,引入数据链路层的目的 1.目的意义 数据链路层是体系结构中的第二层; 从发送端来讲,物理层可以将数据链路层交付下来的数据,装换成光,电信号发送到传输介质上了 从接收端来讲,物理层能将传输介质的光&…...
Vue.js not detected解决方法
扩展程序》管理扩展程序》详情》允许访问文件地址打开...
Window10安装PHP7.4
1. 下载PHP 7 首先需要下载PHP 7的安装包,可以从PHP官网(https://www.php.net/downloads.php)或者Windows下的PHP官网(http://windows.php.net/download/)下载Windows版本的PHP 7安装包。根据自己的系统架构ÿ…...
【C++刷题】二叉树进阶刷题
根据二叉树创建字符串 class Solution { public:/** ()的省略有两种情况* 1.左右都为空,省略* 2.左子树不为空,右子树为空,省略*/string tree2str(TreeNode* root){string s;if(root nullptr){return s;}s to_string(root->val);if(root…...
有效的数独
有效的数独 题目: 请你判断一个 9 x 9 的数独是否有效。只需要 根据以下规则 ,验证已经填入的数字是否有效即可。数字 1-9 在每一行只能出现一次。 数字 1-9 在每一列只能出现一次。 数字 1-9 在每一个以粗实线分隔的 3x3 宫内只能出现一次。示例 1: 输…...
Vue导航守卫beforeRouteEnter,beforeRouteUpdate,beforeRouteLeave
Vue导航守卫以我自己的理解就是监听页面进入,修改,和离开的功能。每个守卫接受三个参数 to: Route: 即将要进入的目标路由对象 from: Route: 当前导航正要离开的路由 next: Function: 一定要调用该方法来 resolve 这个钩子。执行效果依赖 next 方法的调用参数。 next(): 进行…...
小红书《乡村振兴战略下传统村落文化旅游设计》中南大许少辉八一新著
小红书《乡村振兴战略下传统村落文化旅游设计》中南大许少辉八一新著...
Android13 下拉菜单栏中添加快捷截图按钮
Android 13 原生系统下拉状态栏中是没有快捷截图按钮,现在需要添加快捷截图功能。 添加快捷截图功能后的效果图: 涉及修改的文件如下: modified: vendor/mediatek/proprietary/packages/apps/SystemUI/res/values/config.xml modified: vendor/mediatek/proprietary/…...
GFS文件系统
GFS 分布式文件系统 GlusterFS简介 GlusterFS 是一个开源的分布式文件系统。 由存储服务器、客户端以及NFS/Samba 存储网关(可选,根据需要选择使用)组成。 没有元数据服务器组件,这有助于提升整个系统的性能、可靠性和稳定性。 …...
22 相交链表
相交链表 题解1 快慢双指针改进 (acb bca)题解2 哈希表(偷懒) 给你两个单链表的头节点 headA 和 headB ,请你找出并返回两个单链表相交的起始节点。如果两个链表不存在相交节点,返回 null 。 题目数据 保证 整个链式结构中不存在环。 注意ÿ…...
简历(快速上手)
简历 文章目录 简历简历模板:排版上:内容上:沟通上: 简历在面试中起到关键作用 网申,HR只会花10秒多来看一下 内推,如果简历没优势就只能pass 简历模板: ⽊及简历(推荐! ) : https://resume.mdedit.online 排版上: 尽量简洁,…...
wpf复制xaml及其cs窗体到其他项目 添加现有项,选 .xaml.cs,点添加即可。VS2022
添加现有项,选 LoadingWindow.xaml.cs,点添加即可。...
在线旅游平台步入新时代,携程如何走出自己的路?
今年旅游从线下到线上全方位火了。有统计数据,一季度,光是抖音,旅游达人发布视频数量就高达175万条,播放量1350亿次,收获27亿次点赞。在这一趋势下,许多“不出名”的景区和酒店借势抖音达人完成“出圈”。短…...
第19节 Node.js Express 框架
Express 是一个为Node.js设计的web开发框架,它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用,和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...
Docker 离线安装指南
参考文章 1、确认操作系统类型及内核版本 Docker依赖于Linux内核的一些特性,不同版本的Docker对内核版本有不同要求。例如,Docker 17.06及之后的版本通常需要Linux内核3.10及以上版本,Docker17.09及更高版本对应Linux内核4.9.x及更高版本。…...
CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型
CVPR 2025 | MIMO:支持视觉指代和像素对齐的医学视觉语言模型 论文信息 标题:MIMO: A medical vision language model with visual referring multimodal input and pixel grounding multimodal output作者:Yanyuan Chen, Dexuan Xu, Yu Hu…...
IGP(Interior Gateway Protocol,内部网关协议)
IGP(Interior Gateway Protocol,内部网关协议) 是一种用于在一个自治系统(AS)内部传递路由信息的路由协议,主要用于在一个组织或机构的内部网络中决定数据包的最佳路径。与用于自治系统之间通信的 EGP&…...
ElasticSearch搜索引擎之倒排索引及其底层算法
文章目录 一、搜索引擎1、什么是搜索引擎?2、搜索引擎的分类3、常用的搜索引擎4、搜索引擎的特点二、倒排索引1、简介2、为什么倒排索引不用B+树1.创建时间长,文件大。2.其次,树深,IO次数可怕。3.索引可能会失效。4.精准度差。三. 倒排索引四、算法1、Term Index的算法2、 …...
【碎碎念】宝可梦 Mesh GO : 基于MESH网络的口袋妖怪 宝可梦GO游戏自组网系统
目录 游戏说明《宝可梦 Mesh GO》 —— 局域宝可梦探索Pokmon GO 类游戏核心理念应用场景Mesh 特性 宝可梦玩法融合设计游戏构想要素1. 地图探索(基于物理空间 广播范围)2. 野生宝可梦生成与广播3. 对战系统4. 道具与通信5. 延伸玩法 安全性设计 技术选…...
Web 架构之 CDN 加速原理与落地实践
文章目录 一、思维导图二、正文内容(一)CDN 基础概念1. 定义2. 组成部分 (二)CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 (三)CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 …...
高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数
高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数 在软件开发中,单例模式(Singleton Pattern)是一种常见的设计模式,确保一个类仅有一个实例,并提供一个全局访问点。在多线程环境下,实现单例模式时需要注意线程安全问题,以防止多个线程同时创建实例,导致…...
基于Java+MySQL实现(GUI)客户管理系统
客户资料管理系统的设计与实现 第一章 需求分析 1.1 需求总体介绍 本项目为了方便维护客户信息为了方便维护客户信息,对客户进行统一管理,可以把所有客户信息录入系统,进行维护和统计功能。可通过文件的方式保存相关录入数据,对…...
Python+ZeroMQ实战:智能车辆状态监控与模拟模式自动切换
目录 关键点 技术实现1 技术实现2 摘要: 本文将介绍如何利用Python和ZeroMQ消息队列构建一个智能车辆状态监控系统。系统能够根据时间策略自动切换驾驶模式(自动驾驶、人工驾驶、远程驾驶、主动安全),并通过实时消息推送更新车…...
