2-1 张量数据结构
张量概念
张量是什么?
单个元素叫标量(scalar),一个序列叫向量(vector),多个序列组成的平面叫矩阵(matrix),多个平面组成的立方体叫张量(tensor)。在深度学习中,标量、向量、矩阵、高维矩阵都统称为张量。在pytorch中,一个Tensor内部包含数据和导数两部分。
Pytorch的基本数据结构是张量Tensor。张量即多维数组。Pytorch的张量和numpy中的array很类似。
在Pytorch中,我们使用张量对模型的输入和输出以及模型的参数进行编码。最重要的是,数据转化为张量可以方便在GPU上运行,这样运行速度可以大大加快。
一、张量的数据类型(如何创建张量)
torch.float64(torch.double),
torch.float32(torch.float), 最常用
torch.float16,
torch.int64(torch.long),
torch.int32(torch.int),
torch.int16,
torch.int8,
torch.uint8,
torch.bool
可以直接使用指定类型

**也使用特定函数创建:**torch.IntTensor()、torch.tensor()(等价于torch.FloatTensor)、torch.BoolTensor()
注意:
torch.IntTensor(3)创建的张量并不是 tensor(3)或者tensor([3]),而是随机的三个整数


torch.Tensor()参数:
data:data的数据类型可以是列表list、元组tuple、numpy数组ndarray、纯量scalar(又叫标量)和其他的一些数据类型。
dtype:该参数可选参数,默认为None,如果不进行设置,生成的Tensor数据类型会拷贝data中传入的参数的数据类型,比如data中的数据类型为float,则默认会生成数据类型为torch.FloatTensor的Tensor。
device:该参数可选参数,默认为None,如果不进行设置,会在当前的设备上为生成的Tensor分配内存。
requires_grad:该参数为可选参数,默认为False,在为False的情况下,创建的Tensor不能进行梯度运算,改为True时,则可以计算梯度。
pin_memory:该参数为可选参数,默认为False,如果设置为True,则在固定内存中分配当前Tensor,不过只适用于CPU中的Tensor。
不同类型转换:

注意区分 torch.tensor 和 torch.Tensor:


所以说 torch.Tensor 等价于 torch.FloatTensor
二、张量维度
不同类型的数据可以用不同维度(dimension)的张量来表示。
标量为0维张量,向量为1维张量,矩阵为2维张量。
彩色图像有rgb三个通道,可以表示为3维张量。
视频还有时间维,可以表示为4维张量。
可以简单地总结为:有几层中括号,就是多少维的张量。
三、张量尺寸
可以使用 shape属性或者 size()方法查看张量在每一维的长度.
可以使用view方法改变张量的尺寸。
如果view方法改变尺寸失败,可以使用reshape方法.

四、张量和numpy数组
可以用numpy方法从Tensor得到numpy数组,也可以用torch.from_numpy从numpy数组得到Tensor。
这两种方法关联的Tensor和numpy数组是共享数据内存的。
如果改变其中一个,另外一个的值也会发生改变。
如果有需要,可以用张量的clone方法拷贝张量,中断这种关联。
此外,还可以使用item方法从标量张量得到对应的Python数值。
使用tolist方法从张量得到对应的Python数值列表。
tensor.add_(1) #给 tensor增加1,arr也随之改变 等价于: torch.add(tensor,1,out = tensor)
#torch.from_numpy函数从numpy数组得到Tensor
arr = np.zeros(3) # 1*3 然后元素都是0
tensor = torch.from_numpy(arr)# numpy方法从Tensor得到numpy数组
tensor = torch.zeros(3)
arr = tensor.numpy()
参考:https://github.com/lyhue1991/eat_pytorch_in_20_days
相关文章:
2-1 张量数据结构
张量概念 张量是什么? 单个元素叫标量(scalar),一个序列叫向量(vector),多个序列组成的平面叫矩阵(matrix),多个平面组成的立方体叫张量(tensor&…...
QSqlQuery查询语句
SqlQuery 封装了在 QSqlDatabase 上执行的 SQL 查询中创建、导航和检索数据所涉及的功能。 可用于执行 DML(数据操作语言)语句,如 SELECT、INSERT、UPDATE 和 DELETE, 以及 DDL(数据定义语言)语句ÿ…...
用c语言编写出三底模型
以下是一个用C语言实现三底模型的示例代码。这个程序通过循环遍历输入的股票数据,判断是否出现三底形态,如果是,则输出买入信号,否则输出卖出信号。 c语言 #include <stdio.h> #include <stdlib.h> // 判断是否出现…...
15 Python使用MySQL
概述 在上一节,我们介绍了如何在Python中使用网络,包括:套接字编程、socketserver等内容。在这一节,我们将介绍如何在Python中使用MySQL。MySQL是最流行的关系型数据库管理系统之一,由瑞典MySQL AB公司开发,…...
3、Nginx 常用的命令和配置文件
文章目录 3、nginx 常用的命令和配置文件3.1 nginx 常用的命令:3.2 nginx.conf 配置文件3.2.1 地址3.2.2 内容3.2.2 vim不正常退出后再次打开信息提示解决方法 3.3 第一部分:全局块3.4 第二部分:events 块3.4 第三部分:http 块①、…...
python经典百题之兔子出生问题
这是一个经典的 Fibonacci 数列问题,可以通过递归或循环来解决。 递归方法: 由题意可知,第 n 个月的兔子数等于第 n-1 个月的兔子数加上第 n-2 个月的兔子数。设 f(n) 表示第 n 个月的兔子数,则有: f(n) f(n-1) f…...
不定积分的概念和性质
目录 原函数 不定积分 不定积分的几何意义 原函数的存在定理 不定积分的性质 不定积分是微积分的一个关键部分,它涉及到一个函数的不定积分的计算。不定积分可以理解为求一个函数的原函数,也被称为反导数。原函数是一个函数,使得该函数的…...
远程访问服务器JupyterLab的配置方法
远程访问服务器JupyterLab的配置方法 环境及工具注意 基本步骤生成密码生成并修改配置文件*错误:jupyter localhost 已拒绝连接*后台运行jupyter后台关闭 其实就是在服务器运行JupyterLab,然后在本地浏览器访问 环境及工具 服务器:Ubuntu 1…...
Java native 关键字
如你在看 JDK 的源代码的时候,大概率会看到很多方法使用了 native 关键字。 下面是 String 对象 JDK 中的源代码,就带有了一个 native 关键字。 native 是干什么用的 简单来说就是 Java 的 native 方法的实现不是用 Java 实现的,可能在其他…...
【线性代数】沉浸式线性代数在线学习网站
地址:http://immersivemath.com/ila/index.html 这是全球第一本带交互式图形的线性代数教材,作者是 J. Strm, K. strm, and T. Akenine-Mller。 全书一共十章,各章节内容如下: 接下来我将对各章节进行简单的总结,另外…...
Kotlin中特性、数据类、伴生对象、顶层函数
Kotlin中的函数参数和属性声明 在 Kotlin 中,函数参数和属性有不同的声明方式和行为。这些特性使得 Kotlin 代码更加安全、易于理解和维护。 函数参数的只读性 fun sum(a: Int, b: Int): Int {var modifiedA aif (modifiedA > 0) {modifiedA 1}//三元表达式v…...
《PostgreSQL物化视图:创建、维护与应用》
🌷🍁 博主猫头虎(🐅🐾)带您 Go to New World✨🍁 🐅🐾猫头虎建议程序员必备技术栈一览表📖: 🛠️ 全栈技术 Full Stack: 📚…...
shell脚本之test命令
shell脚本之test命令 数值比较:2. 字符串比较:3. 文件测试:4. 逻辑操作:5. 其他测试: test命令在Shell脚本中用于进行条件测试和条件判断。它用于检查文件、字符串和数值的各种条件,并返回一个状态码&#…...
JAVA设计模式8:装饰模式,动态地将责任附加到对象上,扩展对象的功能
作者主页:Designer 小郑 作者简介:3年JAVA全栈开发经验,专注JAVA技术、系统定制、远程指导,致力于企业数字化转型,CSDN博客专家,阿里云社区专家博主,蓝桥云课讲师。 目录 一、什么是装饰模式二、…...
Linux学习之MySQL备份
xtrabackup资源下载 完全备份与恢复 # 1.物理备份与恢复 # 冷备份,需停止数据库服务 适合线下服务器。 [rootmysql50 ~]# systemctl stop mysqld [rootmysql50 ~]# mkdir /bakdir [rootmysql50 ~]# cp -r /var/lib/mysql /bakdir/mysql.bak [rootmysql50 ~]# cd /…...
时序分解 | MATLAB实现北方苍鹰优化算法NGO优化VMD信号分量可视化
时序分解 | MATLAB实现北方苍鹰优化算法NGO优化VMD信号分量可视化 目录 时序分解 | MATLAB实现北方苍鹰优化算法NGO优化VMD信号分量可视化效果一览基本介绍程序设计参考资料 效果一览 基本介绍 北方苍鹰优化算法NGO优化VMD,对其分解层数,惩罚因子数做优化…...
分类预测 | Matlab实现RBF-Adaboost多特征分类预测
分类预测 | Matlab实现RBF-Adaboost多特征分类预测 目录 分类预测 | Matlab实现RBF-Adaboost多特征分类预测效果一览基本介绍研究内容程序设计参考资料 效果一览 基本介绍 1.Matlab实现基于RBF-Adaboost数据分类预测(Matlab完整程序和数据) 2.多特征输入…...
【Java代码规范】阿里编码规约 VS CheckStyle
全文速览: 1、关于代码编码质量2、如何小成本有效管理企业内的编码规范 2.1 阿里编码规约IDE插件2.2 CheckStyle IDE插件 3、如何在代码提交中检验规范 3.1 阿里编码规约配置git precommit check3.2 CheckStyle配置git precommit check3.3 实践 1、关于代码编码质…...
iPhone苹果15手机圆点怎么设置让屏幕上显示出来圆形图标?
iPhone苹果15手机圆点怎么设置让屏幕上显示出来圆形图标? 1、在iPhone苹果手机上找到「设置」并点击打开; 2、在苹果iPhone设置内找到「辅助功能」并点击打开; 3、在苹果iPhone手机辅助功能内的动作交互内找到「触控」并点击打开;…...
kibana报错内存溢出问题解决
一、背景: kibana内存溢出,进程被kill掉,导致前端页面访问不到。 报错内容 二、报错原因: 发现是前端 js 报的内存 oom 异常,通过网上资料发现node.js 的默认内存大小为1.4G Node 中通过 JavaScript 使用内存时只能…...
MySQL 隔离级别:脏读、幻读及不可重复读的原理与示例
一、MySQL 隔离级别 MySQL 提供了四种隔离级别,用于控制事务之间的并发访问以及数据的可见性,不同隔离级别对脏读、幻读、不可重复读这几种并发数据问题有着不同的处理方式,具体如下: 隔离级别脏读不可重复读幻读性能特点及锁机制读未提交(READ UNCOMMITTED)允许出现允许…...
DockerHub与私有镜像仓库在容器化中的应用与管理
哈喽,大家好,我是左手python! Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库,用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...
电脑插入多块移动硬盘后经常出现卡顿和蓝屏
当电脑在插入多块移动硬盘后频繁出现卡顿和蓝屏问题时,可能涉及硬件资源冲突、驱动兼容性、供电不足或系统设置等多方面原因。以下是逐步排查和解决方案: 1. 检查电源供电问题 问题原因:多块移动硬盘同时运行可能导致USB接口供电不足&#x…...
家政维修平台实战20:权限设计
目录 1 获取工人信息2 搭建工人入口3 权限判断总结 目前我们已经搭建好了基础的用户体系,主要是分成几个表,用户表我们是记录用户的基础信息,包括手机、昵称、头像。而工人和员工各有各的表。那么就有一个问题,不同的角色…...
【单片机期末】单片机系统设计
主要内容:系统状态机,系统时基,系统需求分析,系统构建,系统状态流图 一、题目要求 二、绘制系统状态流图 题目:根据上述描述绘制系统状态流图,注明状态转移条件及方向。 三、利用定时器产生时…...
C++.OpenGL (10/64)基础光照(Basic Lighting)
基础光照(Basic Lighting) 冯氏光照模型(Phong Lighting Model) #mermaid-svg-GLdskXwWINxNGHso {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-GLdskXwWINxNGHso .error-icon{fill:#552222;}#mermaid-svg-GLd…...
【开发技术】.Net使用FFmpeg视频特定帧上绘制内容
目录 一、目的 二、解决方案 2.1 什么是FFmpeg 2.2 FFmpeg主要功能 2.3 使用Xabe.FFmpeg调用FFmpeg功能 2.4 使用 FFmpeg 的 drawbox 滤镜来绘制 ROI 三、总结 一、目的 当前市场上有很多目标检测智能识别的相关算法,当前调用一个医疗行业的AI识别算法后返回…...
关键领域软件测试的突围之路:如何破解安全与效率的平衡难题
在数字化浪潮席卷全球的今天,软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件,这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下,实现高效测试与快速迭代?这一命题正考验着…...
怎么让Comfyui导出的图像不包含工作流信息,
为了数据安全,让Comfyui导出的图像不包含工作流信息,导出的图像就不会拖到comfyui中加载出来工作流。 ComfyUI的目录下node.py 直接移除 pnginfo(推荐) 在 save_images 方法中,删除或注释掉所有与 metadata …...
LangFlow技术架构分析
🔧 LangFlow 的可视化技术栈 前端节点编辑器 底层框架:基于 (一个现代化的 React 节点绘图库) 功能: 拖拽式构建 LangGraph 状态机 实时连线定义节点依赖关系 可视化调试循环和分支逻辑 与 LangGraph 的深…...
