当前位置: 首页 > news >正文

树上背包问题动态规划

目录

树状动态规划概述

示例 

求解思路 


树状动态规划概述

树状动态规划(Tree DP)是一种在树结构上进行动态规划的方法。在树状DP中,我们利用树的特殊结构性质,通过递归地向下更新子节点的状态,最终得到整个树的最优解或其他需要的信息。

树状DP通常包含以下步骤:

  1. 定义状态:根据问题的要求,定义每个节点的状态。这可以是一个数值、一个数组、一个结构体等,取决于问题的具体情况。
  2. 设计转移方程:根据问题的要求,确定每个节点的状态如何从其子节点的状态转移而来。这通常通过遍历节点的子节点,并利用子节点的状态来更新当前节点的状态来实现。
  3. 确定初始状态:确定叶节点的初始状态,这是递归的终止条件。
  4. 递归地进行状态转移:从树的顶部开始,递归地向下进行状态转移,直到所有节点的状态都被计算出来。

示例 

问题描述: 给定一棵有根树,每个节点有两个属性:权重和价值。节点的权重表示该节点所需要的空间,节点的价值表示该节点的价值。现在有一个给定的背包容量,要求选择一些节点放入背包中,使得总权重不超过背包容量,同时总价值最大。

输入:

  • 一棵树的节点数
  • 每个节点的权重和价值
  • 背包容量

输出:

  • 最大的总价值

求解思路 

这个例子是一个经典的背包问题在树结构中的应用。我们需要在给定的一棵有根树中,选择一些节点放入背包中,使得总权重不超过背包容量,同时总价值最大。

为了解决这个问题,我们可以使用动态规划的方法。具体思路如下:

  1. 定义状态:我们定义dp[i][j]表示以节点i为根节点的子树中,在背包容量为j的情况下,可以获得的最大总价值。

  2. 状态转移方程:对于节点i的每个孩子节点child,我们需要考虑两种情况:

    • 不选择child节点:此时dp[i][j]不变。
    • 选择child节点:此时需要从剩余容量j减去child节点的权重,即j - tree[child].weight,并从子问题dp[child][j - tree[child].weight]中得到最大价值,再加上child节点的价值tree[child].value。整体来看,选择child节点后的最大总价值为dp[child][j - tree[child].weight] + tree[child].value。

    综合考虑上述两种情况,我们可以得到状态转移方程:

    dp[i][j] = max(dp[i][j], dp[child][j - tree[child].weight] + tree[child].value)

    其中,child为节点i的孩子节点。

  3. 初始化:我们将dp数组初始化为0,表示初始时没有选择任何节点。

  4. 从根节点开始进行深度优先搜索(DFS),按照上述状态转移方程更新dp数组中的值。最终,dp[1][背包容量]即为所求的最大总价值。

下面是代码中主要部分的解释:

 
void dfs(int node) {for (int child : tree[node].children) {// 对每个孩子节点进行深度优先搜索dfs(child);// 更新dp数组for (int i = dp[node].size() - 1; i >= tree[node].weight; i--) {dp[node][i] = max(dp[node][i], dp[child][i - tree[node].weight] + tree[child].value);}}
}

在dfs函数中,我们首先对当前节点的每个孩子节点进行深度优先搜索。然后,通过一个循环,从dp[node]的最后一个元素开始向前更新dp[node]的值。这里使用了倒序循环的方式,是因为我们需要保证在更新dp[node][i]时,dp[child][i - tree[node].weight]已经被计算过(即在dp[node]的前面位置)。同时,我们需要确保总权重不超过背包容量,所以我们从tree[node].weight开始遍历。

最后,在主函数中,我们输入节点数和每个节点的权重、价值信息,构建树结构,并调用dfs函数进行求解。最终结果存储在dp[1][背包容量]中。

希望以上详细解释能够帮助你理解这个树状动态规划问题的解决方法。如有任何疑问,请随时提出。

示例:

输入:
节点数 = 5
节点 1: 权重 = 2, 价值 = 3
节点 2: 权重 = 1, 价值 = 2
节点 3: 权重 = 3, 价值 = 4
节点 4: 权重 = 2, 价值 = 2
节点 5: 权重 = 1, 价值 = 1
背包容量 = 5输出:
最大总价值 = 9

C++代码实现:

#include <iostream>
#include <vector>
using namespace std;struct Node {int weight;int value;vector<int> children;
};vector<Node> tree;  // 存储树节点的信息
vector<vector<int>> dp;  // 存储动态规划的结果void dfs(int node) {for (int child : tree[node].children) {dfs(child);for (int i = dp[node].size() - 1; i >= tree[node].weight; i--) {dp[node][i] = max(dp[node][i], dp[child][i - tree[node].weight] + tree[child].value);}}
}int main() {int n;  // 节点数cin >> n;tree.resize(n + 1);  // 从编号1开始存储节点信息dp.resize(n + 1, vector<int>(n + 1, 0));  // 初始化动规数组for (int i = 1; i <= n; i++) {cin >> tree[i].weight >> tree[i].value;}// 构建树结构for (int i = 2; i <= n; i++) {int parent;cin >> parent;tree[parent].children.push_back(i);}dfs(1);  // 从根节点开始进行深度优先搜索cout << "最大总价值 = " << dp[1][n] << endl;return 0;
}

这段代码首先通过输入构建了一棵树,并使用动态规划方法计算了最大总价值。其中,dfs函数进行了深度优先搜索和动态规划的计算,dp数组用于存储动态规划的结果。

相关文章:

树上背包问题动态规划

目录 树状动态规划概述 示例 求解思路 树状动态规划概述 树状动态规划&#xff08;Tree DP&#xff09;是一种在树结构上进行动态规划的方法。在树状DP中&#xff0c;我们利用树的特殊结构性质&#xff0c;通过递归地向下更新子节点的状态&#xff0c;最终得到整个树的最…...

linux查看进程对应的线程(数)

首先&#xff0c;top或ps查看进程列表&#xff0c;确定要查看的进程pid&#xff0c;如下面40698 查看进程的线程情况 查看进程&#xff1a;top -p 40698 查看线程&#xff1a;top -p 40698 -d 3 -H 其中-d是刷新频率 可看到此进程共211个线程&#xff0c;运行中的是211个。…...

Python中的桌面应用开发库有哪些?

Python中有几个受欢迎的桌面应用开发库。以下是其中一些&#xff1a; Tkinter&#xff1a;这是Python的标准GUI库&#xff0c;它提供了构建简单的桌面应用程序的基本组件和功能。 PyQt&#xff1a;这是一个成熟的、功能强大的跨平台图形用户界面框架&#xff0c;它是Python绑定…...

【大数据】Neo4j 图数据库使用详解

目录 一、图数据库介绍 1.1 什么是图数据库 1.2 为什么需要图数据库 1.3 图数据库应用领域 二、图数据库Neo4j简介 2.1 Neo4j特性 2.2 Neo4j优点 三、Neo4j数据模型 3.1 图论基础 3.2 属性图模型 3.3 Neo4j的构建元素 3.3.1 节点 3.3.2 属性 3.3.3 关系 3.3.4 标…...

Windows11系统C盘用户文件夹下用户文件夹为中文,解决方案

说明&#xff1a; 1. 博主电脑为Windows11操作系统&#xff0c;亲测有效&#xff0c;修改后无任何影响&#xff0c;软件都可以正常运行&#xff01; 2. Windows10系统还不知道可不可行&#xff0c;因为Windows11的计算机管理中没有本地用户和组&#xff0c;博主在csdn上看到很…...

Python正则表达式(re)

正则表达式&#xff0c;又称规则表达式,&#xff08;Regular Expression&#xff0c;在代码中常简写为regex、regexp或RE&#xff09;&#xff0c;是一种文本模式&#xff0c;包括普通字符&#xff08;例如&#xff0c;a 到 z 之间的字母&#xff09;和特殊字符&#xff08;称为…...

【PyTorch 08】如果要手动安装对应的包

例如有时候我们要下载 PyG &#xff0c;但是需要手动下载&#xff0c;需要进行以下步骤&#xff1a; 网站链接&#xff1a;https://data.pyg.org/whl/ 首先查看当前安装好的Pytorch版本和对应的cuda版本 1. pip list&#xff1a;查看torch版本 2. torch.version.cuda&#xf…...

黑马JVM总结(十二)

&#xff08;1&#xff09;五种引用_强软弱 实线箭头表示强引用&#xff0c;虚心线表示软弱虚终结器引用 在平时我们用的引用&#xff0c;基本都为强引用 &#xff0c;比如说创建一个对象通过运算符赋值给了一个变量&#xff0c;那么这个变量呢就强引用了刚刚的对象 强引用的…...

彻底搞懂线程池原理以及创建方式

1. 为什么要使用线程池 在实际使用中&#xff0c;线程是很占用系统资源的&#xff0c;如果对线程管理不善很容易导致系统问题。因此&#xff0c;在大多数并发框架中都会使用线程池来管理线程&#xff0c;使用线程池管理线程主要有如下好处&#xff1a; 降低资源消耗。通过复用…...

FreeSWITCH 1.10.10 简单图形化界面9 - 鼎兴FXO网关SIP中继内网IPPBX落地

FreeSWITCH 1.10.10 简单图形化界面9 - 鼎兴FXO网关SIP中继内网IPPBX落地 0、 界面预览1、创建一个话务台2、创建PBX SIP中继并设置呼入权限3、设置呼出规则4、设置分机呼出权限5、设置FXO 网关相关信息6、设置FXO网关端口组呼入号码7、设置FXO网关的SIP中继8、设置FXO网关呼叫…...

Oracle数据如何迁移导入到MySQL

使用Navicat工具建立数据连接&#xff0c;进行数据传输 1、打开Navicat工具&#xff0c;分别连接Oracle数据库和MySQL数据库。 2、连接源选择你的oracle数据&#xff0c;目标选mysql 即可成功导入...

卡尔曼滤波(Kalman Filter)原理浅析-数学理论推导-1

目录 前言数学理论推导1. 递归算法2. 数学基础结语参考 前言 最近项目需求涉及到目标跟踪部分&#xff0c;准备从 DeepSORT 多目标跟踪算法入手。DeepSORT 中涉及的内容有点多&#xff0c;以前也就对其进行了简单的了解&#xff0c;但是真正去做发现总是存在这样或者那样的困惑…...

Linux 文件创建、查看

touch、cat、more命令 ①touch命令——创建文件 ②cat命令——查看文件内容全部显示 这是txt.txt文件内容 使用cat命令查看 ③more命令——查看文件内容支持翻页 在查看的过程中&#xff0c;通过空格翻页&#xff0c;通过q退出查看...

WPF 如何让xmal的属性换行显示 格式化

WPF 如何让UI的xmal 按照下面的格式化显示 首先格式化显示在VS中的快捷键是 Ctrl &#xff2b;D 然后需要配置&#xff0c;工具 选项 -文本编辑器 -xmal -格式化-间距 更改成如下就可以了...

Linux学习之MySQL主从复制

MySQL配置一主一从 环境准备&#xff1a; 两台服务器&#xff1a; Master&#xff1a;192.168.88.53&#xff0c;Slave&#xff1a;192.168.88.54 在两台服务器上安装mysql-server # 配置主服务器192.168.88.53 # 启用binlog日志 [rootmysql53 ~]# yum -y install mysql-ser…...

【JavaSE笔记】抽象类与接口

一、抽象类 1、概念 在面向对象的概念中&#xff0c;所有的对象都是通过类来描绘的&#xff0c;但是反过来&#xff0c;并不是所有的类都是用来描绘对象的&#xff0c;如果一个类中没有包含足够的信息来描绘一个具体的对象&#xff0c;这样的类就是抽象类。 package demo2…...

详谈操作系统中的内核态和用户态

不知道大家有没有思考过这样一个问题:什么是处理器&#xff08;CPU&#xff09;的状态&#xff1f;&#x1f914; 其实CPU和人一样,没有执行程序的时候,是没有什么状态的,当它执行的程序是用户程序的时候就叫用户态&#xff0c;当执行的程序是操作系统的代码时就叫系统态或者内…...

OpenWrt KernelPackage分析

一. 前言 KernelPackage是OpenWrt用来编译内核模块的函数&#xff0c;其实KernelPackage后面会调用BuildPackage&#xff0c;这里会一块将BuildPackage也顺便分析&#xff0c;本文以gpio-button-hotplug驱动模块为例&#xff0c;讲解整个编译过程。 gpio-button-hotplug驱动编译…...

第 363 场 LeetCode 周赛题解

A 计算 K 置位下标对应元素的和 模拟 class Solution { public:int pop_cnt(int x) {//求x的二进制表示中的1的位数int res 0;for (; x; x >> 1)if (x & 1)res;return res;}int sumIndicesWithKSetBits(vector<int> &nums, int k) {int res 0;for (int i…...

ffplay源码解析-main入口函数

main入口函数 初始化 变量、缓存区、SDL窗口初始化等 int main(int argc, char **argv) {int flags;VideoState *is; // av_log_set_level(AV_LOG_TRACE);init_dynload();av_log_set_flags(AV_LOG_SKIP_REPEATED);parse_loglevel(argc, argv, options);/// av_log_set_le…...

Flask RESTful 示例

目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题&#xff1a; 下面创建一个简单的Flask RESTful API示例。首先&#xff0c;我们需要创建环境&#xff0c;安装必要的依赖&#xff0c;然后…...

Linux链表操作全解析

Linux C语言链表深度解析与实战技巧 一、链表基础概念与内核链表优势1.1 为什么使用链表&#xff1f;1.2 Linux 内核链表与用户态链表的区别 二、内核链表结构与宏解析常用宏/函数 三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势5.1 插入效率5.2 安全…...

React hook之useRef

React useRef 详解 useRef 是 React 提供的一个 Hook&#xff0c;用于在函数组件中创建可变的引用对象。它在 React 开发中有多种重要用途&#xff0c;下面我将全面详细地介绍它的特性和用法。 基本概念 1. 创建 ref const refContainer useRef(initialValue);initialValu…...

Appium+python自动化(十六)- ADB命令

简介 Android 调试桥(adb)是多种用途的工具&#xff0c;该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具&#xff0c;其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利&#xff0c;如安装和调试…...

23-Oracle 23 ai 区块链表(Blockchain Table)

小伙伴有没有在金融强合规的领域中遇见&#xff0c;必须要保持数据不可变&#xff0c;管理员都无法修改和留痕的要求。比如医疗的电子病历中&#xff0c;影像检查检验结果不可篡改行的&#xff0c;药品追溯过程中数据只可插入无法删除的特性需求&#xff1b;登录日志、修改日志…...

基于Flask实现的医疗保险欺诈识别监测模型

基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施&#xff0c;由雇主和个人按一定比例缴纳保险费&#xff0c;建立社会医疗保险基金&#xff0c;支付雇员医疗费用的一种医疗保险制度&#xff0c; 它是促进社会文明和进步的…...

Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)

引言&#xff1a;为什么 Eureka 依然是存量系统的核心&#xff1f; 尽管 Nacos 等新注册中心崛起&#xff0c;但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制&#xff0c;是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...

c#开发AI模型对话

AI模型 前面已经介绍了一般AI模型本地部署&#xff0c;直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型&#xff0c;但是目前国内可能使用不多&#xff0c;至少实践例子很少看见。开发训练模型就不介绍了&am…...

中医有效性探讨

文章目录 西医是如何发展到以生物化学为药理基础的现代医学&#xff1f;传统医学奠基期&#xff08;远古 - 17 世纪&#xff09;近代医学转型期&#xff08;17 世纪 - 19 世纪末&#xff09;​现代医学成熟期&#xff08;20世纪至今&#xff09; 中医的源远流长和一脉相承远古至…...

宇树科技,改名了!

提到国内具身智能和机器人领域的代表企业&#xff0c;那宇树科技&#xff08;Unitree&#xff09;必须名列其榜。 最近&#xff0c;宇树科技的一项新变动消息在业界引发了不少关注和讨论&#xff0c;即&#xff1a; 宇树向其合作伙伴发布了一封公司名称变更函称&#xff0c;因…...