当前位置: 首页 > news >正文

竞赛 基于深度学习的人脸识别系统

前言

🔥 优质竞赛项目系列,今天要分享的是

基于深度学习的人脸识别系统

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

机器学习-人脸识别过程

基于传统图像处理和机器学习技术的人脸识别技术,其中的流程都是一样的。

机器学习-人脸识别系统都包括:

  • 人脸检测
  • 人脸对其
  • 人脸特征向量化
  • 人脸识别
    在这里插入图片描述

人脸检测

人脸检测用于确定人脸在图像中的大小和位置,即解决“人脸在哪里”的问题,把真正的人脸区域从图像中裁剪出来,便于后续的人脸特征分析和识别。下图是对一张图像的人脸检测结果:

在这里插入图片描述

人脸对其

同一个人在不同的图像序列中可能呈现出不同的姿态和表情,这种情况是不利于人脸识别的。

所以有必要将人脸图像都变换到一个统一的角度和姿态,这就是人脸对齐。

它的原理是找到人脸的若干个关键点(基准点,如眼角,鼻尖,嘴角等),然后利用这些对应的关键点通过相似变换(Similarity
Transform,旋转、缩放和平移)将人脸尽可能变换到标准人脸。

下图是一个典型的人脸图像对齐过程:
在这里插入图片描述
这幅图就更加直观了:
在这里插入图片描述

人脸特征向量化

这一步是将对齐后的人脸图像,组成一个特征向量,该特征向量用于描述这张人脸。

但由于,一幅人脸照片往往由比较多的像素构成,如果以每个像素作为1维特征,将得到一个维数非常高的特征向量, 计算将十分困难;而且这些像素之间通常具有相关性。

所以我们常常利用PCA技术对人脸描述向量进行降维处理,保留数据集中对方差贡献最大的人脸特征来达到简化数据集的目的

PCA人脸特征向量降维示例代码:

#coding:utf-8
from numpy import *
from numpy import linalg as la
import cv2
import osdef loadImageSet(add):FaceMat = mat(zeros((15,98*116)))j =0for i in os.listdir(add):if i.split('.')[1] == 'normal':try:img = cv2.imread(add+i,0)except:print 'load %s failed'%iFaceMat[j,:] = mat(img).flatten()j += 1return FaceMatdef ReconginitionVector(selecthr = 0.8):# step1: load the face image data ,get the matrix consists of all imageFaceMat = loadImageSet('D:\python/face recongnition\YALE\YALE\unpadded/').T# step2: average the FaceMatavgImg = mean(FaceMat,1)# step3: calculate the difference of avgimg and all image data(FaceMat)diffTrain = FaceMat-avgImg#step4: calculate eigenvector of covariance matrix (because covariance matrix will cause memory error)eigvals,eigVects = linalg.eig(mat(diffTrain.T*diffTrain))eigSortIndex = argsort(-eigvals)for i in xrange(shape(FaceMat)[1]):if (eigvals[eigSortIndex[:i]]/eigvals.sum()).sum() >= selecthr:eigSortIndex = eigSortIndex[:i]breakcovVects = diffTrain * eigVects[:,eigSortIndex] # covVects is the eigenvector of covariance matrix# avgImg 是均值图像,covVects是协方差矩阵的特征向量,diffTrain是偏差矩阵return avgImg,covVects,diffTraindef judgeFace(judgeImg,FaceVector,avgImg,diffTrain):diff = judgeImg.T - avgImgweiVec = FaceVector.T* diffres = 0resVal = inffor i in range(15):TrainVec = FaceVector.T*diffTrain[:,i]if  (array(weiVec-TrainVec)**2).sum() < resVal:res =  iresVal = (array(weiVec-TrainVec)**2).sum()return res+1if __name__ == '__main__':avgImg,FaceVector,diffTrain = ReconginitionVector(selecthr = 0.9)nameList = ['01','02','03','04','05','06','07','08','09','10','11','12','13','14','15']characteristic = ['centerlight','glasses','happy','leftlight','noglasses','rightlight','sad','sleepy','surprised','wink']for c in characteristic:count = 0for i in range(len(nameList)):# 这里的loadname就是我们要识别的未知人脸图,我们通过15张未知人脸找出的对应训练人脸进行对比来求出正确率loadname = 'D:\python/face recongnition\YALE\YALE\unpadded\subject'+nameList[i]+'.'+c+'.pgm'judgeImg = cv2.imread(loadname,0)if judgeFace(mat(judgeImg).flatten(),FaceVector,avgImg,diffTrain) == int(nameList[i]):count += 1print 'accuracy of %s is %f'%(c, float(count)/len(nameList))  # 求出正确率

人脸识别

这一步的人脸识别,其实是对上一步人脸向量进行分类,使用各种分类算法。

比如:贝叶斯分类器,决策树,SVM等机器学习方法。

从而达到识别人脸的目的。

这里分享一个svm训练的人脸识别模型:

from __future__ import print_functionfrom time import timeimport loggingimport matplotlib.pyplot as pltfrom sklearn.cross_validation import train_test_splitfrom sklearn.datasets import fetch_lfw_peoplefrom sklearn.grid_search import GridSearchCVfrom sklearn.metrics import classification_reportfrom sklearn.metrics import confusion_matrixfrom sklearn.decomposition import RandomizedPCAfrom sklearn.svm import SVCprint(__doc__)# Display progress logs on stdoutlogging.basicConfig(level=logging.INFO, format='%(asctime)s %(message)s')################################################################################ Download the data, if not already on disk and load it as numpy arrayslfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4)# introspect the images arrays to find the shapes (for plotting)n_samples, h, w = lfw_people.images.shape# for machine learning we use the 2 data directly (as relative pixel# positions info is ignored by this model)X = lfw_people.datan_features = X.shape[1]# the label to predict is the id of the persony = lfw_people.targettarget_names = lfw_people.target_namesn_classes = target_names.shape[0]print("Total dataset size:")print("n_samples: %d" % n_samples)print("n_features: %d" % n_features)print("n_classes: %d" % n_classes)################################################################################ Split into a training set and a test set using a stratified k fold# split into a training and testing setX_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42)################################################################################ Compute a PCA (eigenfaces) on the face dataset (treated as unlabeled# dataset): unsupervised feature extraction / dimensionality reductionn_components = 80print("Extracting the top %d eigenfaces from %d faces"% (n_components, X_train.shape[0]))t0 = time()pca = RandomizedPCA(n_components=n_components, whiten=True).fit(X_train)print("done in %0.3fs" % (time() - t0))eigenfaces = pca.components_.reshape((n_components, h, w))print("Projecting the input data on the eigenfaces orthonormal basis")t0 = time()X_train_pca = pca.transform(X_train)X_test_pca = pca.transform(X_test)print("done in %0.3fs" % (time() - t0))################################################################################ Train a SVM classification modelprint("Fitting the classifier to the training set")t0 = time()param_grid = {'C': [1,10, 100, 500, 1e3, 5e3, 1e4, 5e4, 1e5],'gamma': [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.1], }clf = GridSearchCV(SVC(kernel='rbf', class_weight='balanced'), param_grid)clf = clf.fit(X_train_pca, y_train)print("done in %0.3fs" % (time() - t0))print("Best estimator found by grid search:")print(clf.best_estimator_)print(clf.best_estimator_.n_support_)################################################################################ Quantitative evaluation of the model quality on the test setprint("Predicting people's names on the test set")t0 = time()y_pred = clf.predict(X_test_pca)print("done in %0.3fs" % (time() - t0))print(classification_report(y_test, y_pred, target_names=target_names))print(confusion_matrix(y_test, y_pred, labels=range(n_classes)))################################################################################ Qualitative evaluation of the predictions using matplotlibdef plot_gallery(images, titles, h, w, n_row=3, n_col=4):"""Helper function to plot a gallery of portraits"""plt.figure(figsize=(1.8 * n_col, 2.4 * n_row))plt.subplots_adjust(bottom=0, left=.01, right=.99, top=.90, hspace=.35)for i in range(n_row * n_col):plt.subplot(n_row, n_col, i + 1)# Show the feature faceplt.imshow(images[i].reshape((h, w)), cmap=plt.cm.gray)plt.title(titles[i], size=12)plt.xticks(())plt.yticks(())# plot the result of the prediction on a portion of the test setdef title(y_pred, y_test, target_names, i):pred_name = target_names[y_pred[i]].rsplit(' ', 1)[-1]true_name = target_names[y_test[i]].rsplit(' ', 1)[-1]return 'predicted: %s\ntrue:      %s' % (pred_name, true_name)prediction_titles = [title(y_pred, y_test, target_names, i)for i in range(y_pred.shape[0])]plot_gallery(X_test, prediction_titles, h, w)# plot the gallery of the most significative eigenfaceseigenface_titles = ["eigenface %d" % i for i in range(eigenfaces.shape[0])]plot_gallery(eigenfaces, eigenface_titles, h, w)plt.show()

深度学习-人脸识别过程

不同于机器学习模型的人脸识别,深度学习将人脸特征向量化,以及人脸向量分类结合到了一起,通过神经网络算法一步到位。

深度学习-人脸识别系统都包括:

  • 人脸检测
  • 人脸对其
  • 人脸识别

人脸检测

深度学习在图像分类中的巨大成功后很快被用于人脸检测的问题,起初解决该问题的思路大多是基于CNN网络的尺度不变性,对图片进行不同尺度的缩放,然后进行推理并直接对类别和位置信息进行预测。另外,由于对feature
map中的每一个点直接进行位置回归,得到的人脸框精度比较低,因此有人提出了基于多阶段分类器由粗到细的检测策略检测人脸,例如主要方法有Cascade CNN、
DenseBox和MTCNN等等。

MTCNN是一个多任务的方法,第一次将人脸区域检测和人脸关键点检测放在了一起,与Cascade
CNN一样也是基于cascade的框架,但是整体思路更加的巧妙合理,MTCNN总体来说分为三个部分:PNet、RNet和ONet,网络结构如下图所示。

在这里插入图片描述

人脸识别

人脸识别问题本质是一个分类问题,即每一个人作为一类进行分类检测,但实际应用过程中会出现很多问题。第一,人脸类别很多,如果要识别一个城镇的所有人,那么分类类别就将近十万以上的类别,另外每一个人之间可获得的标注样本很少,会出现很多长尾数据。根据上述问题,要对传统的CNN分类网络进行修改。

我们知道深度卷积网络虽然作为一种黑盒模型,但是能够通过数据训练的方式去表征图片或者物体的特征。因此人脸识别算法可以通过卷积网络提取出大量的人脸特征向量,然后根据相似度判断与底库比较完成人脸的识别过程,因此算法网络能不能对不同的人脸生成不同的特征,对同一人脸生成相似的特征,将是这类embedding任务的重点,也就是怎么样能够最大化类间距离以及最小化类内距离。

Metric Larning

深度学习中最先应用metric
learning思想之一的便是DeepID2了。其中DeepID2最主要的改进是同一个网络同时训练verification和classification(有两个监督信号)。其中在verification
loss的特征层中引入了contrastive loss。

Contrastive
loss不仅考虑了相同类别的距离最小化,也同时考虑了不同类别的距离最大化,通过充分运用训练样本的label信息提升人脸识别的准确性。因此,该loss函数本质上使得同一个人的照片在特征空间距离足够近,不同人在特征空间里相距足够远直到超过某个阈值。(听起来和triplet
loss有点像)。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

相关文章:

竞赛 基于深度学习的人脸识别系统

前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 基于深度学习的人脸识别系统 该项目较为新颖&#xff0c;适合作为竞赛课题方向&#xff0c;学长非常推荐&#xff01; &#x1f9ff; 更多资料, 项目分享&#xff1a; https://gitee.com/dancheng-senior/…...

uniapp:APP开发,后台保活

前言&#xff1a; 在ios中&#xff0c;软件切换至后台、手机息屏&#xff0c;过了十来秒软件就会被系统挂起&#xff0c;APP内的任务就不能继续执行&#xff1b;在android中&#xff0c;默认情况下&#xff0c;软件在后台运行的时候&#xff0c;触发某些特定条件的情况下&…...

vue2 项目中嵌入视频

案例&#xff1a; 代码&#xff1a; <template><div class"schematicDiagramIndex"><el-container><el-aside width"20rem"> <!-- <h4 style"font-size: 18px">视频演示</h4>--><div styl…...

第二章 进程与线程 十二、进程同步与进程互斥

目录 一、进程同步 1、定义 二、进程互斥 1、定义 2、四个部分 3、原则 一、进程同步 1、定义 进程同步是指在多个进程之间协调执行顺序的一种机制&#xff0c;使得进程按照一定的顺序执行&#xff0c;以避免出现不一致的情况。常见的实现方式有信号量、管程、屏障等。…...

Linux内核链表(list)移植到任意平台

一、前言 linux内核链表在include/linux/list.h文件中&#xff0c;内核中实现的链表比较简洁&#xff0c;实用性很强&#xff0c;因此想把它单独移植出来使用。 内核中的代码只能使用gnuc编译器编译&#xff0c;stdc编译器编译是会报错的&#xff0c;主要是因为typeof这个宏是…...

【操作系统】聊聊什么是CPU上下文切换

对于linux来说&#xff0c;本身就是一个多任务运行的操作系统&#xff0c;运行远大于CPU核心数的程序&#xff0c;从用户视角来看是并发执行&#xff0c;而在CPU视角看其实是将不同的CPU时间片进行分割&#xff0c;每个程序执行一下&#xff0c;就切换到别的程序执行。那么这个…...

CMake教程-第 2 步 添加一个库

CMake教程-第 2 步 添加一个库 1 CMake教程介绍2 学习步骤Step 1: A Basic Starting PointStep 2: Adding a LibraryStep 3: Adding Usage Requirements for a LibraryStep 4: Adding Generator ExpressionsStep 5: Installing and TestingStep 6: Adding Support for a Testin…...

DS 顺序表--类实现(C++数据结构题)

实现顺序表的用 C 语言和类实现顺序表 属性包括&#xff1a;数组、实际长度、最大长度&#xff08;设定为 1000 &#xff09; 操作包括&#xff1a;创建、插入、删除、查找 类定义参考 #include<iostream> using namespace std; #define ok 0 #define error -1 // 顺…...

0.UML

1.图 1.1类图含义 第一层显示类的名称,如果是抽象类,则就用斜体显示。第二层是类的特性,通常就是字段和属性。第三层是类的操作,通常是方法或行为。注意前面的符号, ,表示public,-,表示private,#,表示protected。 1.2接口图 与类图的区别主要是顶端有<< interface >…...

PostgreSQL设置主键为自增

1、创建自增序列 CREATE SEQUENCE table_name_id_seq START 1; 2、设置字段默认值 字段默认值中设置 nextval(table_name_id_seq) 3、常用查询 -- 查询所有序列 select * from information_schema.sequences where sequence_schema public; -- 查询自增序列的当前值 select cu…...

input修改checkbox复选框默认选中样式

问题描述&#xff1a; <input type"checkbox" /> input修改checkbox默认选中样式&#xff0c;直接设置选中后的样式不生效&#xff0c;需要先给复选框设置-webkit-appearance: none&#xff08;取消默认样式&#xff09;&#xff0c; 再设置样式才会生效。 …...

高云FPGA系列教程(10):letter-shell移植

文章目录 letter-shell简介letter-shell源码获取letter-shell移植函数和变量应用示例 本文是高云FPGA系列教程的第10篇文章。 shell&#xff0c;中文是外壳的意思&#xff0c;就是操作系统的外壳。通过shell命令可以操作和控制操作系统&#xff0c;比如Linux中的Shell命令就包括…...

【C语言学习笔记---指针进阶02】

C语言程序设计笔记---017 C语言进阶之回调函数1、函数指针数组2、回调函数3、 回调函数的应用 --- qsort库函数4、模拟qsort函数5、结语 C语言进阶之回调函数 前言&#xff1a; 通过C语言进阶前篇的指针进阶01的知识&#xff0c;继续学习。这篇引用一个简易计算器的程序进行深…...

低功耗蓝牙物联网:未来连接的无限可能

物联网是连接各种设备和传感器的网络&#xff0c;其目的是实现信息的交换和共享&#xff0c;提高效率并优化生活。在这个领域&#xff0c;低功耗蓝牙&#xff08;BLE&#xff09;正在发挥着越来越重要的作用。 低功耗蓝牙是一种无线通信技术&#xff0c;它的主要特点是低功耗和…...

安装社区版本OB

获取一键安装包 https://www.oceanbase.com/softwarecenter 离线安装 [admintest001 ~]$ tar -xzf oceanbase-all-in-one-*.tar.gz [admintest001 ~]$ cd oceanbase-all-in-one/bin/ [admintest001 bin]$ ./install.sh [admintest001 bin]$ source ~/.oceanbase-all-in-one/…...

JSON 串和 Java 对象的相互转换

JSON 串和 Java 对象的相互转换 以 json 格式的数据进行前后端交互 前端发送请求时&#xff0c;如果是复杂的数据就会以 json 提交给后端&#xff1b; 而后端如果需要响应一些复杂的数据时&#xff0c;也需要以 json 格式将数据响应回给浏览器 为达到以上目的就需要重点学习…...

爬虫 — App 爬虫(一)

目录 一、介绍二、APP 爬虫常见反爬三、APP 抓包常用工具四、模拟器五、安装 APP1、下载 APP2、安装 APP 六、fiddler1、工作原理2、安装3、基本介绍 七、环境配置1、fiddler 的配置2、夜神模拟器的配置 八、案例 一、介绍 爬虫分类——数据来源 1、PC 端爬虫&#xff08;网页…...

如何使用正则表达式实现Java日志信息的抓取与收集

首先&#xff0c;什么是Java日志信息&#xff1f;简单来说&#xff0c;Java应用程序在运行过程中会输出一些信息&#xff0c;这些信息可以用来追踪程序运行状态、调试错误等。而Java日志信息就是这些输出信息的集合。 那么为什么要抓取和收集Java日志信息呢&#xff1f;一方面…...

C/C++算法入门 | 简单模拟

不爱生姜不吃醋⭐️ 如果本文有什么错误的话欢迎在评论区中指正 与其明天开始&#xff0c;不如现在行动&#xff01; 文章目录 &#x1f334;前言&#x1f334;一、害死人不偿命的&#xff08;3n1&#xff09;猜想1.题目&#xff08;PAT B1001&#xff09;2.思路3.代码实现 &am…...

stm32学习-芯片系列/选型/开发方式

【03】STM32HAL库开发-初识STM32 | STM概念、芯片分类、命名规则、选型 | STM32原理图设计、看数据手册、最小系统的组成 、STM32IO分配_小浪宝宝的博客-CSDN博客  STM32&#xff1a;ST是意法半导体&#xff0c;M是MCU/MPU&#xff0c;32是32位。  ST累计推出了&#xff1a…...

深入剖析AI大模型:大模型时代的 Prompt 工程全解析

今天聊的内容&#xff0c;我认为是AI开发里面非常重要的内容。它在AI开发里无处不在&#xff0c;当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗"&#xff0c;或者让翻译模型 "将这段合同翻译成商务日语" 时&#xff0c;输入的这句话就是 Prompt。…...

【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力

引言&#xff1a; 在人工智能快速发展的浪潮中&#xff0c;快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型&#xff08;LLM&#xff09;。该模型代表着该领域的重大突破&#xff0c;通过独特方式融合思考与非思考…...

html-<abbr> 缩写或首字母缩略词

定义与作用 <abbr> 标签用于表示缩写或首字母缩略词&#xff0c;它可以帮助用户更好地理解缩写的含义&#xff0c;尤其是对于那些不熟悉该缩写的用户。 title 属性的内容提供了缩写的详细说明。当用户将鼠标悬停在缩写上时&#xff0c;会显示一个提示框。 示例&#x…...

iview框架主题色的应用

1.下载 less要使用3.0.0以下的版本 npm install less2.7.3 npm install less-loader4.0.52./src/config/theme.js文件 module.exports {yellow: {theme-color: #FDCE04},blue: {theme-color: #547CE7} }在sass中使用theme配置的颜色主题&#xff0c;无需引入&#xff0c;直接可…...

elementUI点击浏览table所选行数据查看文档

项目场景&#xff1a; table按照要求特定的数据变成按钮可以点击 解决方案&#xff1a; <el-table-columnprop"mlname"label"名称"align"center"width"180"><template slot-scope"scope"><el-buttonv-if&qu…...

在树莓派上添加音频输入设备的几种方法

在树莓派上添加音频输入设备可以通过以下步骤完成&#xff0c;具体方法取决于设备类型&#xff08;如USB麦克风、3.5mm接口麦克风或HDMI音频输入&#xff09;。以下是详细指南&#xff1a; 1. 连接音频输入设备 USB麦克风/声卡&#xff1a;直接插入树莓派的USB接口。3.5mm麦克…...

大数据治理的常见方式

大数据治理的常见方式 大数据治理是确保数据质量、安全性和可用性的系统性方法&#xff0c;以下是几种常见的治理方式&#xff1a; 1. 数据质量管理 核心方法&#xff1a; 数据校验&#xff1a;建立数据校验规则&#xff08;格式、范围、一致性等&#xff09;数据清洗&…...

高分辨率图像合成归一化流扩展

大家读完觉得有帮助记得关注和点赞&#xff01;&#xff01;&#xff01; 1 摘要 我们提出了STARFlow&#xff0c;一种基于归一化流的可扩展生成模型&#xff0c;它在高分辨率图像合成方面取得了强大的性能。STARFlow的主要构建块是Transformer自回归流&#xff08;TARFlow&am…...

ArcGIS Pro+ArcGIS给你的地图加上北回归线!

今天来看ArcGIS Pro和ArcGIS中如何给制作的中国地图或者其他大范围地图加上北回归线。 我们将在ArcGIS Pro和ArcGIS中一同介绍。 1 ArcGIS Pro中设置北回归线 1、在ArcGIS Pro中初步设置好经纬格网等&#xff0c;设置经线、纬线都以10间隔显示。 2、需要插入背会归线&#xf…...

【R语言编程——数据调用】

这里写自定义目录标题 可用库及数据集外部数据导入方法查看数据集信息 在R语言中&#xff0c;有多个库支持调用内置数据集或外部数据&#xff0c;包括studentdata等教学或示例数据集。以下是常见的库和方法&#xff1a; 可用库及数据集 openintro库 该库包含多个教学数据集&a…...