当前位置: 首页 > news >正文

等差数列和等比数列 常用公式

等差数列

定义

a_{n+1}-a_{n}=d


通项公式

a_{n}=a_{1}+\left ( n-1 \right )d

a_{n}=a_{m}+(n-m)d


公差

d=\frac{a_{n}-a_{1}}{n-1}\left ( n\neq 1 \right )

d=\frac{a_{n}-a_{m}}{n-m}(n\neq m)


前n项和公式

S_{n}=\frac{n(a_{1}+a_{n})}{2}=na_{1}+\frac{n(n-1)}{2}d


中项公式

A=\frac{a+b}{2}


下标:m+n=p+q,则

a_{m}+a_{n}=a_{p}+a_{q}


等比数列

定义

\frac{a_{n+1}}{a_{n}}=q


通项公式

a_{n}=a_{1}q^{n-1}

a_{n}=a_{m}q^{n-m}


公比

q^{n-1}=\frac{a_{n}}{a_{1}}

q^{n-m}=\frac{a_{n}}{a_{m}}


前n项和公式

S_{n}=\frac{a_{1}(1-q^{n})}{1-q}=\frac{a_{1}-a_{n}q}{1-q}(q\neq 1)

S_{n}=na_{1}(q=1)


中项公式

G=\pm \sqrt{ab}(ab>0)


下标:m+n=p+q,则

a_{m}a_{n}=a_{p}a_{q}

相关文章:

等差数列和等比数列 常用公式

等差数列 定义 通项公式 , 公差 , 前n项和公式 中项公式 下标:mnpq,则 等比数列 定义 通项公式 , 公比 , 前n项和公式 , 中项公式 下标:mnpq,则...

基于SpringBoot+Vue的MOBA类游戏攻略分享平台

1 简介 MOBA类游戏攻略分享平台,为用户随时随地查看游戏攻略信息提供了便捷的方法,更重要的是大大的简化了管理员管理MOBA类游戏攻略信息的方式方法,更提供了其他想要了解MOBA类游戏攻略信息及运作情况以及挑选方便快捷的可靠渠道。相比于传…...

基于异常上线场景的实时拦截与问题分发策略

作者 | 彭阳 导读 性能中台负责MEG端研发数据的接入、传输、管理、应用等各个环节。为了应对移动应用领域中端技术的快速迭代和线上突增问题的挑战,中台提出了实时拦截与问题的分发机制,旨在在端上线的不同阶段及时发现并拦截异常上线,最大程…...

MySQL常见面试题(一)

😀前言 在数据库管理系统中,存储引擎起着核心的角色,它决定了数据管理和存储的方式。MySQL作为一个领先的开源关系型数据库管理系统,提供了多种存储引擎来满足不同的需求和优化不同的应用。除了选择合适的存储引擎,数据…...

webpack:详解entry和output一些重要API的使用

文章目录 contextentry单个入口多个入口entry相关API例一例二例三 outputoutput.assetModuleFilenameoutput.chunkFilenameoutput.clean【5.20.0版本支持】output.filename【重要】output.globalObjectoutput.library【重要】output.library.nameoutput.library.type【重要】ou…...

Spring后处理器-BeanPostProcessor

Spring后处理器-BeanPostProcessor Bean被实例化后,到最终缓存到名为singletonObjects单例池之前,中间会经过bean的初始化过程((该后处理器的执行时机)),例如:属性的填充、初始化方…...

每日一题~修剪二叉树

原题链接:669. 修剪二叉搜索树 - 力扣(LeetCode) 题目描述: 思路分析: 由题可知,我们要将原来的二叉搜索树调整为值在 low~high 之间的新二叉搜索树,接下来我们分析一下针对不同的节点的处理方…...

图像形态学操作(连通性、腐蚀、膨胀)

相关概念 形态学操作-腐蚀 参数: img: 要处理的图像kernal :核结构iteration :腐蚀的次数,默认是1 形态学操作-膨胀 参数: img : 要处理的图像kernal : 核结构iteration : 膨胀的次数,默认为1 import cv2 as cv im…...

中国这么多 Java 开发者,应该诞生出生态级应用开发框架

1、必须要有,不然就永远不会有 应用开发框架,虽然没有芯片、操作系统、数据库、编程语言这些重要。但是最终呈现在用户面前的,总是有软件部分。而软件系统开发,一般都需要应用开发框架,它是软件系统的基础性部件之一。…...

仿猫扑盒子引流神器试看神马视频-红包打卡签到领金

特点1:站内发红包,抢红包 特点2:会员可上传视频 特点3:设置每天免费试看次数…..具体看演示站点,为准 支付在后台上传收款二维码即可,支持微信和支付宝。前台提交订单后台管理员审核 环境:宝…...

WhatsApp自动营销软件是真实的吗?对做外贸有帮助吗?

出海营销少不了的就是依靠海外平台,WhatsApp作为许多海外国家和地区最受欢迎的聊天应用程序,活跃用户占到了全球人口的四分之一,有些地区比如欧洲、美洲,用户渗透率超过了80%,对海外营销的企业来说是不可缺少的销售工具…...

抖音短视频矩阵系统搭建

企业在进行短视频矩阵运营时,搭建一个矩阵号是非常必要的。矩阵号可以绑定多个不同平台的账号,批量制作和定时发布短视频,提高企业的曝光量和粉丝互动。但是,如何搭建一个有效的短视频矩阵号呢?以下是几个关键步骤。 一…...

Chinese-LLaMA-AIpaca

文章目录 关于 Chinese-LLaMA-Alpaca一、LLaMA模型 --> HF格式二、合并LoRA权重,生成全量模型权重方式1:单LoRA权重合并方式2:多LoRA权重合并(适用于Chinese-Alpaca-Plus )三、使用 Transformers 进行推理四、使用 webui 搭建界面1、克隆text-generation-webui并安装必…...

IP归属地应用的几个主要特点

作为一款优秀的IP地址定位工具,主题IP归属地的应用无疑是最好的选择之一。该应用可以将您需要查询的IP地址快速定位到所在的具体物理位置,并提供详细的地址和地图信息。接下来,让我们一起来看一看IP归属地应用的几个主要特点: 1. …...

通过解读yolov5_gpu_optimization学习如何使用onnx_surgon

onnx实战一: 解析yolov5 gpu的onnx优化案例: 这是一个英伟达的仓库, 这个仓库的做法就是通过用gs对onnx进行修改减少算子然后最后使用TensorRT插件实现算子, 左边是优化过的, 右边是原版的。 通过这个案例理解原版的onnx的导出流程然后我们看英伟达是怎么拿gs来优化…...

图像复原与重建,解决噪声的几种空间域复原方法(数字图像处理概念 P4)

文章目录 图像复原模型噪声模型只存在噪声的空间域复原 图像复原模型 噪声模型 只存在噪声的空间域复原...

Android 启动优化案例:WebView非预期初始化排查

去年年底做启动优化时,有个比较好玩的 case 给大家分享下,希望大家能从我的分享里 get 到我在做一些问题排查修复时是怎么看上去又low又土又高效的。 1. 现象 在我们使用 Perfetto 进行app 启动过程性能观测时,在 UI 线程发现了一段 几十毫…...

20230919后台面经整理

1.你认为什么是操作系统,操作系统有哪些功能 os是:管理资源、向用户提供服务、硬件机器的扩展 1.进程线程管理:状态、控制、通信等 2.存储管理:分配回收、地址转换 3.文件管理:目录、操作、磁盘、存取 4.设备管理&…...

画一个时钟(html+css+js)

这是一个很简约的时钟。。。。。。。 效果&#xff1a; 代码&#xff1a; <template><div class"demo-box"><div class"clock"><ul class"mark"><liv-for"(rotate, index) in rotatedAngles":key"i…...

红 黑 树

文章目录 一、红黑树的概念二、红黑树的实现1. 红黑树的存储结构2. 红黑树的插入 一、红黑树的概念 在 AVL 树中删除一个结点&#xff0c;旋转可能要持续到根结点&#xff0c;此时效率较低 红黑树也是一种二叉搜索树&#xff0c;通过在每个结点中增加一个位置来存储红色或黑色…...

深度学习在微纳光子学中的应用

深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向&#xff1a; 逆向设计 通过神经网络快速预测微纳结构的光学响应&#xff0c;替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...

【CSS position 属性】static、relative、fixed、absolute 、sticky详细介绍,多层嵌套定位示例

文章目录 ★ position 的五种类型及基本用法 ★ 一、position 属性概述 二、position 的五种类型详解(初学者版) 1. static(默认值) 2. relative(相对定位) 3. absolute(绝对定位) 4. fixed(固定定位) 5. sticky(粘性定位) 三、定位元素的层级关系(z-i…...

对WWDC 2025 Keynote 内容的预测

借助我们以往对苹果公司发展路径的深入研究经验&#xff0c;以及大语言模型的分析能力&#xff0c;我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际&#xff0c;我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测&#xff0c;聊作存档。等到明…...

相机从app启动流程

一、流程框架图 二、具体流程分析 1、得到cameralist和对应的静态信息 目录如下: 重点代码分析: 启动相机前,先要通过getCameraIdList获取camera的个数以及id,然后可以通过getCameraCharacteristics获取对应id camera的capabilities(静态信息)进行一些openCamera前的…...

Linux云原生安全:零信任架构与机密计算

Linux云原生安全&#xff1a;零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言&#xff1a;云原生安全的范式革命 随着云原生技术的普及&#xff0c;安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测&#xff0c;到2025年&#xff0c;零信任架构将成为超…...

相机Camera日志分析之三十一:高通Camx HAL十种流程基础分析关键字汇总(后续持续更新中)

【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了:有对最普通的场景进行各个日志注释讲解,但相机场景太多,日志差异也巨大。后面将展示各种场景下的日志。 通过notepad++打开场景下的日志,通过下列分类关键字搜索,即可清晰的分析不同场景的相机运行流程差异…...

深入解析C++中的extern关键字:跨文件共享变量与函数的终极指南

&#x1f680; C extern 关键字深度解析&#xff1a;跨文件编程的终极指南 &#x1f4c5; 更新时间&#xff1a;2025年6月5日 &#x1f3f7;️ 标签&#xff1a;C | extern关键字 | 多文件编程 | 链接与声明 | 现代C 文章目录 前言&#x1f525;一、extern 是什么&#xff1f;&…...

学习STC51单片机32(芯片为STC89C52RCRC)OLED显示屏2

每日一言 今天的每一份坚持&#xff0c;都是在为未来积攒底气。 案例&#xff1a;OLED显示一个A 这边观察到一个点&#xff0c;怎么雪花了就是都是乱七八糟的占满了屏幕。。 解释 &#xff1a; 如果代码里信号切换太快&#xff08;比如 SDA 刚变&#xff0c;SCL 立刻变&#…...

企业如何增强终端安全?

在数字化转型加速的今天&#xff0c;企业的业务运行越来越依赖于终端设备。从员工的笔记本电脑、智能手机&#xff0c;到工厂里的物联网设备、智能传感器&#xff0c;这些终端构成了企业与外部世界连接的 “神经末梢”。然而&#xff0c;随着远程办公的常态化和设备接入的爆炸式…...

基于matlab策略迭代和值迭代法的动态规划

经典的基于策略迭代和值迭代法的动态规划matlab代码&#xff0c;实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...