当前位置: 首页 > news >正文

回归预测 | MATLAB实现RUN-XGBoost龙格库塔优化极限梯度提升树多输入回归预测

回归预测 | MATLAB实现RUN-XGBoost多输入回归预测

目录

    • 回归预测 | MATLAB实现RUN-XGBoost多输入回归预测
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

MATLAB实现RUN-XGBoost多输入回归预测(完整源码和数据)
1.龙格库塔优化XGBoost,数据为多输入回归数据,输入7个特征,输出1个变量,程序乱码是由于版本不一致导致,可以用记事本打开复制到你的文件。
2.运行环境MATLAB2018b及以上。
3.附赠案例数据可直接运行main一键出图~
4.注意程序和数据放在一个文件夹。
5.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

程序设计

  • 完整源码和数据获取方式(资源出下载):MATLAB实现RUN-XGBoost多输入回归预测。
%% Main Loop of RUN 
it=1;%Number of iterations
while it<Max_iterationit=it+1;f=20.*exp(-(12.*(it/Max_iteration))); % (Eq.17.6) Xavg = mean(X);               % Determine the Average of SolutionsSF=2.*(0.5-rand(1,pop)).*f;    % Determine the Adaptive Factor (Eq.17.5)for i=1:pop[~,ind_l] = min(Cost);lBest = X(ind_l,:);   [A,B,C]=RndX(pop,i);   % Determine Three Random Indices of Solutions[~,ind1] = min(Cost([A B C]));% Determine Delta X (Eqs. 11.1 to 11.3)gama = rand.*(X(i,:)-rand(1,dim).*(ub-lb)).*exp(-4*it/Max_iteration);  Stp=rand(1,dim).*((Best_pos-rand.*Xavg)+gama);DelX = 2*rand(1,dim).*(abs(Stp));% Determine Xb and Xw for using in Runge Kutta methodif Cost(i)<Cost(ind1)                Xb = X(i,:);Xw = X(ind1,:);elseXb = X(ind1,:);Xw = X(i,:);endSM = RungeKutta(Xb,Xw,DelX);   % Search Mechanism (SM) of RUN based on Runge Kutta MethodL=rand(1,dim)<0.5;Xc = L.*X(i,:)+(1-L).*X(A,:);  % (Eq. 17.3)Xm = L.*Best_pos+(1-L).*lBest;   % (Eq. 17.4)vec=[1,-1];flag = floor(2*rand(1,dim)+1);r=vec(flag);                   % An Interger number g = 2*rand;mu = 0.5+.1*randn(1,dim);% Determine New Solution Based on Runge Kutta Method (Eq.18) if rand<0.5Xnew = (Xc+r.*SF(i).*g.*Xc) + SF(i).*(SM) + mu.*(Xm-Xc);elseXnew = (Xm+r.*SF(i).*g.*Xm) + SF(i).*(SM)+ mu.*(X(A,:)-X(B,:));end  % Check if solutions go outside the search space and bring them backFU=Xnew>ub;FL=Xnew<lb;Xnew=(Xnew.*(~(FU+FL)))+ub.*FU+lb.*FL; CostNew=fobj(Xnew);if CostNew<Cost(i)X(i,:)=Xnew;Cost(i)=CostNew;end
%% Enhanced solution quality (ESQ)  (Eq. 19)      if rand<0.5EXP=exp(-5*rand*it/Max_iteration);r = floor(Unifrnd(-1,2,1,1));u=2*rand(1,dim); w=Unifrnd(0,2,1,dim).*EXP;               %(Eq.19-1)[A,B,C]=RndX(pop,i);Xavg=(X(A,:)+X(B,:)+X(C,:))/3;           %(Eq.19-2)         beta=rand(1,dim);Xnew1 = beta.*(Best_pos)+(1-beta).*(Xavg); %(Eq.19-3)for j=1:dimif w(j)<1 Xnew2(j) = Xnew1(j)+r*w(j)*abs((Xnew1(j)-Xavg(j))+randn);elseXnew2(j) = (Xnew1(j)-Xavg(j))+r*w(j)*abs((u(j).*Xnew1(j)-Xavg(j))+randn);endendFU=Xnew2>ub;FL=Xnew2<lb;Xnew2=(Xnew2.*(~if rand<w(randi(dim)) SM = RungeKutta(X(i,:),Xnew2,DelX);Xnew = (Xnew2-rand.*Xnew2)+ SF(i)*(SM+(2*rand(1,dim).*Best_pos-Xnew2));  % (Eq. 20)FU=Xnew>ub;FL=Xnew<lb;Xnew=(Xnew.*(~(FU+FL)))+ub.*FU+lb.*FL;CostNew=fobj(Xnew);if CostNew<Cost(i)X(i,:)=Xnew;Cost(i)=CostNew;endendendend
% End of ESQ         
%% Determine the Best Solutionif Cost(i)<Best_scoreBest_pos=X(i,:);Best_score=Cost(i);endend
% Save Best Solution at each iteration    
curve(it) = Best_score;
disp(['it : ' num2str(it) ', Best Cost = ' num2str(curve(it) )]);endend

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

相关文章:

回归预测 | MATLAB实现RUN-XGBoost龙格库塔优化极限梯度提升树多输入回归预测

回归预测 | MATLAB实现RUN-XGBoost多输入回归预测 目录 回归预测 | MATLAB实现RUN-XGBoost多输入回归预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 MATLAB实现RUN-XGBoost多输入回归预测&#xff08;完整源码和数据&#xff09; 1.龙格库塔优化XGBoost&#xff0c;…...

LLM-TAP随笔——语言模型训练数据【深度学习】【PyTorch】【LLM】

文章目录 3、语言模型训练数据3.1、词元切分3.2、词元分析算法 3、语言模型训练数据 数据质量对模型影响非常大。 典型数据处理&#xff1a;质量过滤、冗余去除、隐私消除、词元切分等。 训练数据的构建时间、噪音或有害信息情况、数据重复率等因素都对模型性能有较大影响。训…...

Linux- open() lseek()

文件描述符 文件描述符&#xff08;File Descriptor&#xff0c;简称 FD&#xff09;是 UNIX 和 UNIX-like 系统中用于代表和识别打开的文件或其他I/O资源的一种抽象标识。它是一个非负整数&#xff0c;内部由操作系统进行管理和分配。文件描述符可以代表文件、套接字、管道等…...

Halcon Tuple相关算子(一)

(1) tuple_length( : : Tuple : Length) 功能&#xff1a;返回输入元组中元素的个数。 控制输入参数&#xff1a; Tuple&#xff1a;输入元组&#xff1b; 控制输出参数&#xff1a;length&#xff1a;输入元组中元素的个数。 (2) tuple_find( : : Tuple, ToFind : Indices…...

基于图像形态学处理的路面裂缝检测算法matlab仿真

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 matlab2022a 3.部分核心程序 ...................................................... %1&#xff1a;从文件夹中读取多个…...

PY32F003F18之窗口看门狗

一、PY32F003F18窗口看门狗特点&#xff1a; 即使窗口看门狗被禁止&#xff0c;窗口看门狗的"递减计数器"也会继续递减计数。 二、窗口看门狗复位的条件&#xff1a; 1、将"控制寄存器WWDG_CR"中的WDGA1,激活"窗口看门狗计数器等于0x3F"时,则产…...

SpingBoot:整合Mybatis-plus+Druid+mysql

SpingBoot&#xff1a;整合Mybatis-plusDruid 一、特别说明二、创建springboot新工程三、配置3.1 配置pom.xml文件3.2 配置数据源和durid连接池3.2.1 修改application.yml3.2.2 新增mybatis-config.xml 3.3 编写拦截器配置类 四、自动生成代码五、测试六、编写mapper.xml&#…...

计算机视觉与深度学习-经典网络解析-VGG-[北邮鲁鹏]

目录标题 VGG参考VGG网络贡献使用尺寸更小的$3 \times 3$卷积串联来获得更大的感受野放弃使用$11 \times 11$和$5 \times 5$这样的大尺寸卷积核深度更深、非线性更强&#xff0c;网络的参数也更少&#xff1b;去掉了AlexNet中的局部响应归一化层(LRN)层。 网络结构主要改进输入…...

入门级制作电子期刊的网站推荐

随着数字化时代的到来&#xff0c;越来越多的人开始尝试制作自己的电子期刊。如果你也是其中的一员&#xff0c;那么这篇文章可以帮助你制作电子期刊。无论是初学者还是有一定经验的制作者&#xff0c;都能快速完成高质量的电子期刊制作 小编经常使用的工具是-----FLBOOK在线制…...

软件测试内容整理

1. 软件测试 1.1. 定义 软件测试&#xff08;英语&#xff1a;Software Testing&#xff09;&#xff0c;描述一种用来促进鉴定软件的正确性、完整性、安全性和质量的过程。换句话说&#xff0c;软件测试是一种实际输出与预期输出之间的审核或者比较过程。 软件测试的经典定…...

UniAccess Agent卸载

异常场景&#xff1a; UniAccess Agent导致系统中的好多设置打不开 例如:ipv4的协议,注册表,host等等 需要进行删除,亲测有效,及多家答案平凑的 借鉴了这位大神及他里面引用的大神的内容 https://blog.csdn.net/weixin_44476410/article/details/121605455 问题描述 这个进…...

【C++】C++11——构造、赋值使用条件和生成条件

移动构造和移动赋值生成条件移动构造和移动赋值调用逻辑强制生成默认函数的关键字default禁止生成默认函数的关键字delete 移动构造和移动赋值生成条件 C11中新增的移动构造函数和移动赋值函数的生成条件为&#xff1a; 移动构造函数的生成条件&#xff1a;没有自己实现的移动…...

【LeetCode热题100】--56.合并区间

56.合并区间 排序&#xff1a; 如果按照区间的左端点排序&#xff0c;那么在排完序的列表中&#xff0c;可以合并的区间一定是连续的&#xff0c;如下图所示&#xff0c;标记为蓝色、黄色和绿色的区间分别可以合并为一个大区间&#xff0c;它们在排完序的列表中是连续的 算法&a…...

opencv dnn模块 示例(17) 目标检测 object_detection 之 yolo v5

在前文【opencv dnn模块 示例(16) 目标检测 object_detection 之 yolov4】介绍的yolo v4后的2个月&#xff0c;Ultralytics发布了YOLOV5 的第一个正式版本&#xff0c;其性能与YOLO V4不相伯仲。 文章目录 1、Yolo v5 和 Yolo v4 的区别说明1.1、Data Augmentation - 数据增强1…...

关于安卓SVGA浅尝(一)svgaplayer库的使用

关于安卓SVGA浅尝&#xff08;一&#xff09;使用 相关链接 SVGA官网 SVGA-github说明文档 背景 项目开发&#xff0c;都会和动画打交道&#xff0c;动画的方案选取&#xff0c;就有很多选择。如Json动画&#xff0c;svga动画&#xff0c;gif等等。各有各的优势。目前项目中…...

【LFU】一文让你弄清 Redis LFU 页面置换算法

上一次&#xff0c;相信大家已经知道关于 LRU 页面置换算法的思想和实现了&#xff0c;这里可以一键直达&#xff1a; 【LRU】一文让你弄清 Redis LRU 页面置换算法 Redis 的淘汰策略中&#xff0c;关于 LFU 页面置换算法&#xff0c;今天咱们来捋一捋到底思想是啥&#xff0…...

Python爬虫实战:用简单四步爬取小红书图片

小红书是一个热门的社交分享平台&#xff0c;汇聚了大量精美的图片。如果您希望保存或使用这些图片&#xff0c;本文将为您详细介绍如何使用Python爬虫轻松爬取小红书图片。 一、安装必要的库 在开始之前&#xff0c;确保您已经安装了以下Python库&#xff1a; requests&#…...

行为型模式-解释器模式

提供了评估语言的语法或表达式的方式&#xff0c;它属于行为型模式。这种模式实现了一个表达式接口&#xff0c;该接口解释一个特定的上下文。这种模式被用在 SQL 解析、符号处理引擎等。 意图&#xff1a;给定一个语言&#xff0c;定义它的文法表示&#xff0c;并定义一个解释…...

Linux系统编程(五):信号

参考引用 UNIX 环境高级编程 (第3版)黑马程序员-Linux 系统编程 1. 信号基础理论 1.1 概念和机制 概念 信号在生活中随处可见&#xff0c;如&#xff1a;古代战争中摔杯为号、现代战争中的信号弹、体育比赛中使用的信号枪他们都有共性&#xff1a;简单、不能携带大量信息、满足…...

学习路之工具--SecureCRT的下载、安装

百度盘&#xff1a; 链接: https://pan.baidu.com/s/1r3HjEj053cKys54DTqLM4A?pwdgcac 提取码: gcac 复制这段内容后打开百度网盘手机App&#xff0c;操作更方便哦 感谢大佬 简单介绍下SecureCRT SecureCRT是一款支持SSH&#xff08;SSH1和SSH2&#xff09;的终端仿真程序&a…...

深入剖析AI大模型:大模型时代的 Prompt 工程全解析

今天聊的内容&#xff0c;我认为是AI开发里面非常重要的内容。它在AI开发里无处不在&#xff0c;当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗"&#xff0c;或者让翻译模型 "将这段合同翻译成商务日语" 时&#xff0c;输入的这句话就是 Prompt。…...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端

&#x1f31f; 什么是 MCP&#xff1f; 模型控制协议 (MCP) 是一种创新的协议&#xff0c;旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议&#xff0c;它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...

【项目实战】通过多模态+LangGraph实现PPT生成助手

PPT自动生成系统 基于LangGraph的PPT自动生成系统&#xff0c;可以将Markdown文档自动转换为PPT演示文稿。 功能特点 Markdown解析&#xff1a;自动解析Markdown文档结构PPT模板分析&#xff1a;分析PPT模板的布局和风格智能布局决策&#xff1a;匹配内容与合适的PPT布局自动…...

spring:实例工厂方法获取bean

spring处理使用静态工厂方法获取bean实例&#xff0c;也可以通过实例工厂方法获取bean实例。 实例工厂方法步骤如下&#xff1a; 定义实例工厂类&#xff08;Java代码&#xff09;&#xff0c;定义实例工厂&#xff08;xml&#xff09;&#xff0c;定义调用实例工厂&#xff…...

基于Docker Compose部署Java微服务项目

一. 创建根项目 根项目&#xff08;父项目&#xff09;主要用于依赖管理 一些需要注意的点&#xff1a; 打包方式需要为 pom<modules>里需要注册子模块不要引入maven的打包插件&#xff0c;否则打包时会出问题 <?xml version"1.0" encoding"UTF-8…...

微服务商城-商品微服务

数据表 CREATE TABLE product (id bigint(20) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT 商品id,cateid smallint(6) UNSIGNED NOT NULL DEFAULT 0 COMMENT 类别Id,name varchar(100) NOT NULL DEFAULT COMMENT 商品名称,subtitle varchar(200) NOT NULL DEFAULT COMMENT 商…...

C# 类和继承(抽象类)

抽象类 抽象类是指设计为被继承的类。抽象类只能被用作其他类的基类。 不能创建抽象类的实例。抽象类使用abstract修饰符声明。 抽象类可以包含抽象成员或普通的非抽象成员。抽象类的成员可以是抽象成员和普通带 实现的成员的任意组合。抽象类自己可以派生自另一个抽象类。例…...

【生成模型】视频生成论文调研

工作清单 上游应用方向&#xff1a;控制、速度、时长、高动态、多主体驱动 类型工作基础模型WAN / WAN-VACE / HunyuanVideo控制条件轨迹控制ATI~镜头控制ReCamMaster~多主体驱动Phantom~音频驱动Let Them Talk: Audio-Driven Multi-Person Conversational Video Generation速…...

如何更改默认 Crontab 编辑器 ?

在 Linux 领域中&#xff0c;crontab 是您可能经常遇到的一个术语。这个实用程序在类 unix 操作系统上可用&#xff0c;用于调度在预定义时间和间隔自动执行的任务。这对管理员和高级用户非常有益&#xff0c;允许他们自动执行各种系统任务。 编辑 Crontab 文件通常使用文本编…...

STM32HAL库USART源代码解析及应用

STM32HAL库USART源代码解析 前言STM32CubeIDE配置串口USART和UART的选择使用模式参数设置GPIO配置DMA配置中断配置硬件流控制使能生成代码解析和使用方法串口初始化__UART_HandleTypeDef结构体浅析HAL库代码实际使用方法使用轮询方式发送使用轮询方式接收使用中断方式发送使用中…...