Python机器学习实战-特征重要性分析方法(5):递归特征消除(附源码和实现效果)
实现功能
递归地删除特征并查看它如何影响模型性能。删除时会导致更大下降的特征更重要。
实现代码
from sklearn.ensemble import RandomForestClassifier
from sklearn.feature_selection import RFE
import pandas as pd
from sklearn.datasets import load_breast_cancer
import matplotlib.pyplot as pltX, y = load_breast_cancer(return_X_y=True)
df = pd.DataFrame(X, columns=range(30))
df['y'] = yrf = RandomForestClassifier()rfe = RFE(rf, n_features_to_select=10)
rfe.fit(X, y)print(rfe.ranking_)
实现效果

本人读研期间发表5篇SCI数据挖掘相关论文,现在某研究院从事数据挖掘相关科研工作,对数据挖掘有一定认知和理解,会结合自身科研实践经历不定期分享关于python机器学习、深度学习、数据挖掘基础知识与案例。
致力于只做原创,以最简单的方式理解和学习,关注我一起交流成长。
邀请三个朋友关注V订阅号:数据杂坛,即可在后台联系我获取相关数据集和源码,送有关数据分析、数据挖掘、机器学习、深度学习相关的电子书籍。
相关文章:
Python机器学习实战-特征重要性分析方法(5):递归特征消除(附源码和实现效果)
实现功能 递归地删除特征并查看它如何影响模型性能。删除时会导致更大下降的特征更重要。 实现代码 from sklearn.ensemble import RandomForestClassifier from sklearn.feature_selection import RFE import pandas as pd from sklearn.datasets import load_breast_cance…...
如何快速走出网站沙盒期(关于优化百度SEO提升排名)
网站沙盒期是指新建立的网站在百度搜索引擎中无法获得好的排名,甚至被完全忽略的现象。这个现象往往发生在新建立的网站上,因为百度需要时间来评估网站的质量和内容。蘑菇号www.mooogu.cn 为了快速走出网站沙盒期,需要优化百度SEO。以下是5个…...
ATA-8000系列射频功率放大器——应用场景介绍
ATA-8000系列是一款射频功率放大器。其P1dB输出功率500W,饱和输出功率最大1000W。增益数控可调,一键保存设置,提供了方便简洁的操作选择,可与主流的信号发生器配套使用,实现射频信号的放大。 图:ATA-8000系…...
2009-2018年各省涉农贷款数据(wind)
2009-2018年各省涉农贷款数据(wind) 1、时间::209-2018年 2、范围:31省 3、来源:wind 4、指标:涉农贷款 指标解释 :在涉农贷款的分类上,按照城乡地域将涉农贷款分为农村贷款和城…...
window.print()打印及出现的问题
<template><transition name"el-zoom-in-center"><div class"JNPF-preview-main"><div class"JNPF-common-page-header"><el-page-header back"goBack" :content"打印通知书" /><div clas…...
Fedora Linux 39 Beta 预估 10 月底发布正式版
Fedora 39 Beta 镜像于今天发布,用户可以根据自己的使用偏好,下载 KDE Plasma,Xfce 和 Cinnamon 等不同桌面环境版本,正式版预估将于 10 月底发布 Fedora 39 Beta 版本主要更新了 DNF 软件包管理器,并优化了 Anaconda …...
【zookeeper】基于Linux环境安装zookeeper集群
前提,需要有几台linux机器,我们可以准备好诸如finalshell来连接linux并且上传文件; 其次Linux需要安装上ssh,并且在/etc/hosts文件中写好其他几台机器的名字和Ip 127.0.0.1 localhost localhost.localdomain localhost4 localh…...
什么是IoT数字孪生?
数字孪生是资产或系统的实时虚拟模型,它使用来自连接的物联网传感器的数据来创建数字表示。数字孪生允许您从任何地方实时监控设备、资产或流程。数字孪生用于多种目的,例如分析性能、监控问题或在实施之前运行测试。从物联网数字孪生中获得的见解使用户…...
俄罗斯四大平台速卖通、Joom、Ozon 和 UMKA中国卖家如何脱颖而出!
随着全球化的不断推进,越来越多的中国卖家将目光投向了俄罗斯这个广阔的市场。在众多的跨境电商平台中,速卖通、Joom、Ozon 和 UMKA 无疑是最受关注的四个平台。本文将从卖家的角度,详细分析这四大平台的特点和优势,帮助找到最…...
destoon 调用第三方api接口
调用企查查企业工商信息接口为例: 在 \api\extend.func.php 文件下 注意:有注释内容可能接口无法访问 function select_list($k){$query_data array(key>,keyword>$k);$url "https://api.qichacha.com/ECIV4/GetBasicDetailsByName?&q…...
js中的类型转换
原文地址 JavaScript 中有两种类型转换:隐式类型转换(强制类型转换)和显式类型转换。类型转换是将一个数据类型的值转换为另一个数据类型的值的过程。 隐式类型转换(强制类型转换): 隐式类型转换是 Java…...
Oracle物化视图(Materialized View)
与Oracle普通视图仅存储查询定义不同,物化视图(Materialized View)会将查询结果"物化"并保存下来,这意味着物化视图会消耗存储空间,物化的数据需要一定的刷新策略才能和基表同步,在使用和管理上比…...
Spring 学习(九)整合 Mybatis
1. 整合 Mybatis 步骤 导入相关 jar 包 <dependencies><dependency><groupId>junit</groupId><artifactId>junit</artifactId><version>4.12</version><scope>test</scope></dependency><dependency>…...
Android AMS——概述(一)
一、AMS简介 Android AMS(Activity Manager Service)是 Android 操作系统中的一个核心组件,它是 Android 应用程序的管理器,负责管理应用的生命周期、任务栈、进程和活动之间的切换等。AMS在 Android 系统中起着至关重要的作用,确保应用程序能够正确运行并与用户进行交互。…...
DDoS攻击和CC攻击
DDoS是(Distributed Denial of Service,分布式拒绝服务)攻击和CC(Challenge Collapsar,挑战黑洞) 攻击是两种常见且具有破坏性的攻击类型,它们可以对网络基础设施和在线业务造成重大损害。为了抵御这些攻击…...
Lnmp架构之mysql数据库实战2
4、mysql组复制集群 一主多从的请求通常是读的请求高于写 ,但是如果写的请求很高,要求每个节点都可以进行读写,这时分布式必须通过(多组模式)集群的方式进行横向扩容。 组复制对节点的数据一致性要求非常高ÿ…...
【软件工程_设计模式Designer Method】三类?23种常用设计模式?-简介-作业一
设计模式?what? what is Design pattern??? 是一套反复被使用的、经过分类编目的、家喻户晓的、代码设计经验的总结。 它是 软件工程的一块基石。 “ 设计模式是软件工程中一种通用的,可复用的一种解决方案…...
信号相关的函数
#include <sys/types.h> #include <signal.h> int kill(pid_t pid, int sig); -功能:给任何进程pid,发送任何信号sig 参数: pid: >0:将信号发送给指定的进程 0:将信号发送给当前的进程组 -1:将信号发送…...
matlab实现杨氏双缝干涉实验可视化界面
关于杨氏双缝干涉实验的条纹光强理论推导和matlab绘图可以参考下面的链接:杨氏双缝干涉实验matlab实现 接下来利用GUI实现可视化界面。 一、GUI GUIDE简介 1、在命令行窗口输入小写的guide可以自动弹出fig窗口。 2、界面的左侧是常用的工具,鼠标悬停…...
【SQL】统一训练平台数据库实践--20230927
储存过程vlookup_peopledata_csodtraining 默认导出用今天批次的数据进行join on,先删除过渡表的资料,再将查询结果放在过渡表中。 BEGINDECLARE startdate varchar(50);SET startdate date_format(NOW(),%Y%m%d);DELETE FROM season.csod_data2;INSE…...
Python爬虫实战:研究MechanicalSoup库相关技术
一、MechanicalSoup 库概述 1.1 库简介 MechanicalSoup 是一个 Python 库,专为自动化交互网站而设计。它结合了 requests 的 HTTP 请求能力和 BeautifulSoup 的 HTML 解析能力,提供了直观的 API,让我们可以像人类用户一样浏览网页、填写表单和提交请求。 1.2 主要功能特点…...
深度学习在微纳光子学中的应用
深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向: 逆向设计 通过神经网络快速预测微纳结构的光学响应,替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...
python打卡day49
知识点回顾: 通道注意力模块复习空间注意力模块CBAM的定义 作业:尝试对今天的模型检查参数数目,并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...
JVM垃圾回收机制全解析
Java虚拟机(JVM)中的垃圾收集器(Garbage Collector,简称GC)是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象,从而释放内存空间,避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...
【python异步多线程】异步多线程爬虫代码示例
claude生成的python多线程、异步代码示例,模拟20个网页的爬取,每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程:允许程序同时执行多个任务,提高IO密集型任务(如网络请求)的效率…...
【JavaWeb】Docker项目部署
引言 之前学习了Linux操作系统的常见命令,在Linux上安装软件,以及如何在Linux上部署一个单体项目,大多数同学都会有相同的感受,那就是麻烦。 核心体现在三点: 命令太多了,记不住 软件安装包名字复杂&…...
如何理解 IP 数据报中的 TTL?
目录 前言理解 前言 面试灵魂一问:说说对 IP 数据报中 TTL 的理解?我们都知道,IP 数据报由首部和数据两部分组成,首部又分为两部分:固定部分和可变部分,共占 20 字节,而即将讨论的 TTL 就位于首…...
GC1808高性能24位立体声音频ADC芯片解析
1. 芯片概述 GC1808是一款24位立体声音频模数转换器(ADC),支持8kHz~96kHz采样率,集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器,适用于高保真音频采集场景。 2. 核心特性 高精度:24位分辨率,…...
Linux --进程控制
本文从以下五个方面来初步认识进程控制: 目录 进程创建 进程终止 进程等待 进程替换 模拟实现一个微型shell 进程创建 在Linux系统中我们可以在一个进程使用系统调用fork()来创建子进程,创建出来的进程就是子进程,原来的进程为父进程。…...
mac 安装homebrew (nvm 及git)
mac 安装nvm 及git 万恶之源 mac 安装这些东西离不开Xcode。及homebrew 一、先说安装git步骤 通用: 方法一:使用 Homebrew 安装 Git(推荐) 步骤如下:打开终端(Terminal.app) 1.安装 Homebrew…...
