【学习笔记】[ARC153F] Tri-Colored Paths
假设三种颜色的边都存在,并且不存在这样的路径
首先观察到,对于一个简单环上的边,颜色一定相同
因此,考虑建立圆方树,问题转化为圆方树上的 D P DP DP问题。限制是对于方点所连接的边,必须涂上相同的颜色,也就是不存在一条路径上有三种颜色的方点
注意到,如果有两个相邻的颜色不同的方点,那么其对应的子树内的方点一定只有一种颜色。又因为三种颜色的方点都出现过,因此将圆点删除后,剩下的连通块内方点也一定只有一种颜色。考虑到圆方树的性质:只有方点和圆点有边相连,因此枚举这个圆点并统计答案即可。
需要注意的是,当 n ≤ 4 n\le 4 n≤4时需要暴搜解决。这是因为环上会出现反例。同理,对于大小为 3 3 3的点双也要特判(环上的点颜色互不相同,出边只有一条,其他边的颜色都和环上某一条边的颜色相同)。
复杂度 O ( n + m ) O(n+m) O(n+m)。
remark \text{remark} remark 对于圆方树上的 D P DP DP问题,分析性质有时候比设计状态更重要。
#include<bits/stdc++.h>
#define ll long long
#define pb push_back
#define fi first
#define se second
#define db double
#define ull unsigned long long
#define inf 0x3f3f3f3f
using namespace std;
const int mod=998244353;
const int N=2e5+5;
int n,m,cnt;
int dfn[N],low[N],du[N],num;
vector<int>G[N];
stack<int>s;
ll res;
ll fpow(ll x,ll y=mod-2){ll z(1);for(;y;y>>=1){if(y&1)z=z*x%mod;x=x*x%mod;}return z;
}
vector<int>vec[N];
void tarjan(int u){dfn[u]=low[u]=++num,s.push(u);for(auto v:G[u]){if(!dfn[v]){tarjan(v),low[u]=min(low[u],low[v]);if(low[v]>=dfn[u]){int tmp=0;du[u]++,cnt++;do{tmp=s.top(),s.pop();du[tmp]++,vec[cnt].pb(tmp);}while(tmp!=v);vec[cnt].pb(u);}}else low[u]=min(low[u],dfn[v]);}
}
void add(ll &x,ll y){x=(x+y)%mod;
}
vector<pair<int,int>>edge;
int w[10][10],p[10];
void dfs(int x){if(x==m){int ok=0;for(int i=1;i<=n;i++)p[i]=i;do{int sz=0;for(int i=2;i<=n;i++){if(~w[p[i]][p[i-1]]){sz|=1<<w[p[i]][p[i-1]]-1;if(sz==7)break;}else break;}if(sz==7){ok=1;break;}}while(next_permutation(p+1,p+1+n));res+=ok;return;}int u=edge[x].fi,v=edge[x].se;for(int i=1;i<=3;i++){w[u][v]=w[v][u]=i,dfs(x+1);}
}
signed main(){ios::sync_with_stdio(false);cin.tie(0),cout.tie(0);cin>>n>>m;for(int i=1;i<=m;i++){int x,y;cin>>x>>y;G[x].pb(y),G[y].pb(x),edge.pb({x,y});}if(n<=3){cout<<0;return 0;}if(n==4){memset(w,-1,sizeof w),dfs(0);cout<<res;return 0;}for(int i=1;i<=n;i++)if(!dfn[i])tarjan(i);res=(fpow(3,m)-3*fpow(2,m)+3)%mod;for(int i=1;i<=n;i++){if(du[i]>=3){add(res,-fpow(3,du[i])+3*fpow(2,du[i])-3);}}for(int i=1;i<=cnt;i++){if(vec[i].size()==3){int tot=0;for(auto e:vec[i])if(du[e]>1)tot++;if(tot<=1)add(res,-6);}}cout<<(res+mod)%mod;
}
相关文章:
【学习笔记】[ARC153F] Tri-Colored Paths
假设三种颜色的边都存在,并且不存在这样的路径 首先观察到,对于一个简单环上的边,颜色一定相同 因此,考虑建立圆方树,问题转化为圆方树上的 D P DP DP问题。限制是对于方点所连接的边,必须涂上相同的颜色…...
基于SSM的实习管理系统
基于SSM的实习管理系统、前后端分离 开发语言:Java数据库:MySQL技术:SpringSpringMVCMyBatisVue工具:IDEA/Ecilpse、Navicat、Maven 系统展示 管理员界面 教师 学生 研究背景 基于SSM的实习管理系统是一个基于Spring、Spring…...
在Vue中通过ElementUI构建前端页面【登录,注册】,在IEDA构建后端实现前后端分离
一.ElementUI组件入门 1.对于ElementUI的理解 是一套基于 Vue.js 的开源UI组件库,提供了丰富的可复用组件,可以帮助开发者快速构建美观、易用的前端界面 2.Element UI 的特点和优势 多样化的组件:Element UI 提供了众多常用的基础组件&#…...
TX2 open ttyTHS2
TX2 open ttyTHS2 #冷风那个吹# 于 2019-04-01 14:10:43 发布 1749 收藏 6 分类专栏: 平时问题积累 TX2 版权 平时问题积累 同时被 2 个专栏收录 22 篇文章0 订阅 订阅专栏 TX2 30 篇文章8 订阅 订阅专栏 TX2上有5个串口,但是ttyTHS1是调试串口,ttyTHS3是蓝牙,ttyTHS…...
conan入门(二十八):解决conan 1.60.0下 arch64-linux-gnu交叉编译openssl/3.1.2报错问题
上一篇博客《conan入门(二十七):因profile [env]字段废弃导致的boost/1.81.0 在aarch64-linux-gnu下交叉编译失败》解决了conan 1.60.0交叉编译boost/1.80.1的问题后,我继续交叉编译openssl/3.1.2时又报错了 conan install openssl/3.1.2 -pr:h aarch64-linux-gnu.…...
Xcode 15 运行<iOS 14, 启动崩溃问题
如题. Xcode 15 启动 < iOS 14(没具体验证过, 我的问题设备是iOS 13.7)真机设备 出现启动崩溃 解决方案: Build Settings -> Other Linker Flags -> Add -> -ld64...
HTTPS协议概述
HTTPS(Hypertext Transfer Protocol over Secure Socket Layer,基于安全套接字层的超文本传输协议),是以安全为目标的HTTP通道,简单讲是HTTP的安全版。即HTTP下加入SSL层,HTTPS的安全基础是SSL,…...
jmeterbeanshell调用jsonpath获取对应值
1.jmeter 新建线程组、Java Request、BeanShell Assertion、View Results Tree 2、在BeanShell Assertion中贴入代码: import org.apache.jmeter.extractor.json.jsonpath.JSONManager; import java.util.List; JSONManager js new JSONManager(); String jsonStr…...
C++中实现雪花算法来在秒级以及毫秒及时间内生成唯一id
1、雪花算法原理 雪花算法(Snowflake Algorithm)是一种用于生成唯一ID的算法,通常用于分布式系统中,以确保生成的ID在整个分布式系统中具有唯一性。它的名称来源于雪花的形状,因为生成的ID通常是64位的整数࿰…...
OPTEE Gprof(GNU profile)
安全之安全(security)博客目录导读 OPTEE调试技术汇总 目录 一、序言 二、Gprof使用 三、Gprof实现 1、Call graph information 2、PC distribution over time 一、序言 本文描述了如何使用gprof对TA进行概要分析。 配置选项CFG_TA_GPROF_SUPPORTy使OP-TEE能够从在用户模…...
MySQL 事务的操作指南(事务篇 二)
基本操作 事务的提交方式:自动提交(autocommit1)和手动提交(autocommit0) 查询和修改事务提交方式: -- 查看事务提交方式(标识表示这是个系统变量) select autocommit ;-- 修改事务提交方式为自动提交 …...
Oracle 查询 SQL 语句
目录 1. Oracle 查询 SQL 语句1.1. 性能查询常用 SQL1.1.1. 查询最慢的 SQL1.1.2. 列出使用频率最高的 5 个查询1.1.3. 消耗磁盘读取最多的 sql top51.1.4. 找出需要大量缓冲读取(逻辑读)操作的查询1.1.5. 查询每天执行慢的 SQL1.1.6. 从 V$SQLAREA 中查询最占用资源的查询1.1.…...
gin 基本使用
gin 初体验 import ("net/http""github.com/gin-gonic/gin" )func main() {r : gin.Default()r.GET("/ping", func(c *gin.Context) {c.JSON(http.StatusOK, gin.H{"message": "pong",})})r.Run() }gin 路由接受一个 type …...
8月最新修正版风车IM即时聊天通讯源码+搭建教程
8月最新修正版风车IM即时聊天通讯源码搭建教程。风车 IM没啥好说的很多人在找,IM的天花板了,知道的在找的都知道它的价值,开版好像就要29999,后端加密已解,可自己再加密,可反编译出后端项目源码,已增加启动后端需要google auth双重验证,pc端 web端 wap端 android端 ios端 都有 …...
NSDT孪生场景编辑器系统介绍
一、产品背景 数字孪生的建设流程涉及建模、美术、程序、仿真等多种人才的协同作业,人力要求高,实施成本高,建设周期长。如何让小型团队甚至一个人就可以完成数字孪生的开发,是数字孪生工具链要解决的重要问题。考虑到数字孪生复杂…...
3D WEB轻量化引擎HOOPS助力3D测量应用蓬勃发展:效率、精度显著提升
在3D开发工具领域,Tech Soft 3D打造的HOOPS SDK已经崭露头角,成为了全球领先的3D领域开发工具提供商。HOOPS SDK包括四种不同的3D软件开发工具,已成为行业的翘楚。 其中,HOOPS Exchange以其CAD数据转换的能力脱颖而出,…...
【Orange Pi】Orange Pi5 Plus 安装记录
官网:Orange Pi - Orangepi 主控芯片:Rockchip RK3588(8nm LP制程)NPU:内嵌的 NPU 支持INT4/INT8/INT16/FP16混合运算,算力高达 6Top支持的操作系统: Orangepi OS(Droid)Orangepi O…...
NLP 项目:维基百科文章爬虫和分类 - 语料库阅读器
塞巴斯蒂安 一、说明 自然语言处理是机器学习和人工智能的一个迷人领域。这篇博客文章启动了一个具体的 NLP 项目,涉及使用维基百科文章进行聚类、分类和知识提取。灵感和一般方法源自《Applied Text Analysis with Python》一书。 在接下来的文章中,我将…...
查看吾托帮88.47的docker里的tomcat日志
步骤如下 (1)ssh (2)ssh root192.168.88.47 等待输入密码:fytest (3)pwd #注释:输出/root (4)docker exec -it wetoband_deploy /bin/bash #注释࿱…...
衷心 祝愿
达之云衷心祝愿您,中秋国庆双节快乐,阖家幸福!感谢您们一直以来对达之云的关注与支持。 双节来临之际,达之云发布全新产品——达之云CDP客户数据平台(Dazdata CDP),致力于为中小企业提供互联网营…...
HTML 语义化
目录 HTML 语义化HTML5 新特性HTML 语义化的好处语义化标签的使用场景最佳实践 HTML 语义化 HTML5 新特性 标准答案: 语义化标签: <header>:页头<nav>:导航<main>:主要内容<article>&#x…...
SCAU期末笔记 - 数据分析与数据挖掘题库解析
这门怎么题库答案不全啊日 来简单学一下子来 一、选择题(可多选) 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘:专注于发现数据中…...
从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路
进入2025年以来,尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断,但全球市场热度依然高涨,入局者持续增加。 以国内市场为例,天眼查专业版数据显示,截至5月底,我国现存在业、存续状态的机器人相关企…...
macOS多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用
文章目录 问题现象问题原因解决办法 问题现象 macOS启动台(Launchpad)多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用。 问题原因 很明显,都是Google家的办公全家桶。这些应用并不是通过独立安装的…...
2021-03-15 iview一些问题
1.iview 在使用tree组件时,发现没有set类的方法,只有get,那么要改变tree值,只能遍历treeData,递归修改treeData的checked,发现无法更改,原因在于check模式下,子元素的勾选状态跟父节…...
Matlab | matlab常用命令总结
常用命令 一、 基础操作与环境二、 矩阵与数组操作(核心)三、 绘图与可视化四、 编程与控制流五、 符号计算 (Symbolic Math Toolbox)六、 文件与数据 I/O七、 常用函数类别重要提示这是一份 MATLAB 常用命令和功能的总结,涵盖了基础操作、矩阵运算、绘图、编程和文件处理等…...
深入解析C++中的extern关键字:跨文件共享变量与函数的终极指南
🚀 C extern 关键字深度解析:跨文件编程的终极指南 📅 更新时间:2025年6月5日 🏷️ 标签:C | extern关键字 | 多文件编程 | 链接与声明 | 现代C 文章目录 前言🔥一、extern 是什么?&…...
Linux --进程控制
本文从以下五个方面来初步认识进程控制: 目录 进程创建 进程终止 进程等待 进程替换 模拟实现一个微型shell 进程创建 在Linux系统中我们可以在一个进程使用系统调用fork()来创建子进程,创建出来的进程就是子进程,原来的进程为父进程。…...
高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数
高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数 在软件开发中,单例模式(Singleton Pattern)是一种常见的设计模式,确保一个类仅有一个实例,并提供一个全局访问点。在多线程环境下,实现单例模式时需要注意线程安全问题,以防止多个线程同时创建实例,导致…...
Linux 内存管理实战精讲:核心原理与面试常考点全解析
Linux 内存管理实战精讲:核心原理与面试常考点全解析 Linux 内核内存管理是系统设计中最复杂但也最核心的模块之一。它不仅支撑着虚拟内存机制、物理内存分配、进程隔离与资源复用,还直接决定系统运行的性能与稳定性。无论你是嵌入式开发者、内核调试工…...
