当前位置: 首页 > news >正文

pandas--->CSV / JSON

csv

CSV(Comma-Separated Values,逗号分隔值,有时也称为字符分隔值,因为分隔字符也可以不是逗号),其文件以纯文本形式存储表格数据(数字和文本)。

CSV 是一种通用的、相对简单的文件格式,被用户、商业和科学广泛应用。Pandas 可以很方便的处理 CSV 文件,本文以 nba.csv 为例,你可以下载 nba.csv 或打开 nba.csv 查看。

实例1

import pandas as pddf = pd.read_csv('nba.csv')print(df)

to_string()

to_string() 用于返回 DataFrame 类型的数据,如果不使用该函数,则输出结果为数据的前面 5 行和末尾 5 行,中间部分以 ... 代替。

import pandas as pddf = pd.read_csv('nba.csv')print(df.to_string())

to_csv()  

我们也可以使用 to_csv() 方法将 DataFrame 存储为 csv 文件:

import pandas as pd # 三个字段 name, site, age
nme = ["Google", "Runoob", "Taobao", "Wiki"]
st = ["www.google.com", "www.runoob.com", "www.taobao.com", "www.wikipedia.org"]
ag = [90, 40, 80, 98]# 字典
dict = {'name': nme, 'site': st, 'age': ag} df = pd.DataFrame(dict)# 保存 dataframe
df.to_csv('site.csv')

数据处理

head()

head( n ) 方法用于读取前面的 n 行,如果不填参数 n ,默认返回 5 行。

import pandas as pddf = pd.read_csv('nba.csv')print(df.head())

tail()

tail( n ) 方法用于读取尾部的 n 行,如果不填参数 n ,默认返回 5 行,空行各个字段的值返回 NaN

import pandas as pddf = pd.read_csv('nba.csv')print(df.tail())

 info()

info() 方法返回表格的一些基本信息:

import pandas as pddf = pd.read_csv('nba.csv')print(df.info())

输出结果为:

json

JSON(JavaScript Object Notation,JavaScript 对象表示法),是存储和交换文本信息的语法,类似 XML。

JSON 比 XML 更小、更快,更易解析,更多 JSON 内容可以参考 JSON 教程。

Pandas 可以很方便的处理 JSON 数据,本文以 sites.json 为例,内容如下:

实例

[{"id": "A001","name": "菜鸟教程","url": "www.runoob.com","likes": 61},{"id": "A002","name": "Google","url": "www.google.com","likes": 124},{"id": "A003","name": "淘宝","url": "www.taobao.com","likes": 45}
]
import pandas as pddf = pd.read_json('sites.json')print(df.to_string())

to_string()

import pandas as pddata =[{"id": "A001","name": "菜鸟教程","url": "www.runoob.com","likes": 61},{"id": "A002","name": "Google","url": "www.google.com","likes": 124},{"id": "A003","name": "淘宝","url": "www.taobao.com","likes": 45}
]
df = pd.DataFrame(data)print(df)

以上实例输出结果为:

JSON 对象与 Python 字典具有相同的格式,

所以我们可以直接将 Python 字典转化为 DataFrame 数据:

import pandas as pd# 字典格式的 JSON                                                                                              
s = {"col1":{"row1":1,"row2":2,"row3":3},"col2":{"row1":"x","row2":"y","row3":"z"}
}# 读取 JSON 转为 DataFrame                                                                                           
df = pd.DataFrame(s)
print(df)

以上实例输出结果为:

内嵌的 JSON 数据

假设有一组内嵌的 JSON 数据文件 nested_list.json :

{"school_name": "ABC primary school","class": "Year 1","students": [{"id": "A001","name": "Tom","math": 60,"physics": 66,"chemistry": 61},{"id": "A002","name": "James","math": 89,"physics": 76,"chemistry": 51},{"id": "A003","name": "Jenny","math": 79,"physics": 90,"chemistry": 78}]
}

实例

import pandas as pddf = pd.read_json('nested_list.json')print(df)

以上实例输出结果为:

json_normalize()

import pandas as pd
import json# 使用 Python JSON 模块载入数据
with open('nested_list.json','r') as f:data = json.loads(f.read())# 展平数据
df_nested_list = pd.json_normalize(data, record_path =['students'])
print(df_nested_list)

以上实例输出结果为

 json_normalize() 使用了参数 record_path

data = json.loads(f.read()) 使用 Python JSON 模块载入数据。

json_normalize() 使用了参数 record_path 并设置为 ['students'] 用于展开内嵌的 JSON 数据 students

显示结果还没有包含 school_name 和 class 元素,如果需要展示出来可以使用 meta 参数来显示这些元数据:

import pandas as pd
import json# 使用 Python JSON 模块载入数据
with open('nested_list.json','r') as f:data = json.loads(f.read())# 展平数据
df_nested_list = pd.json_normalize(data, record_path =['students'], meta=['school_name', 'class']
)
print(df_nested_list)

以上实例输出结果为:

 读取更复杂的 JSON 数据

nested_mix.json 文件内容

{"school_name": "local primary school","class": "Year 1","info": {"president": "John Kasich","address": "ABC road, London, UK","contacts": {"email": "admin@e.com","tel": "123456789"}},"students": [{"id": "A001","name": "Tom","math": 60,"physics": 66,"chemistry": 61},{"id": "A002","name": "James","math": 89,"physics": 76,"chemistry": 51},{"id": "A003","name": "Jenny","math": 79,"physics": 90,"chemistry": 78}]
}
import pandas as pd
import json# 使用 Python JSON 模块载入数据
with open('nested_mix.json','r') as f:data = json.loads(f.read())df = pd.json_normalize(data, record_path =['students'], meta=['class',['info', 'president'], ['info', 'contacts', 'tel']]
)print(df)

读取内嵌数据中的一组数据

以下是实例文件 nested_deep.json,我们只读取内嵌中的 math 字段:

{"school_name": "local primary school","class": "Year 1","students": [{"id": "A001","name": "Tom","grade": {"math": 60,"physics": 66,"chemistry": 61}},{"id": "A002","name": "James","grade": {"math": 89,"physics": 76,"chemistry": 51}},{"id": "A003","name": "Jenny","grade": {"math": 79,"physics": 90,"chemistry": 78}}]
}

这里我们需要使用到 glom 模块来处理数据套嵌,glom 模块允许我们使用 . 来访问内嵌对象的属性。第一次使用我们需要安装 glom:

pip3 install glom

import pandas as pd
from glom import glomdf = pd.read_json('nested_deep.json')data = df['students'].apply(lambda row: glom(row, 'grade.math'))
print(data)

相关文章:

pandas--->CSV / JSON

csv CSV(Comma-Separated Values,逗号分隔值,有时也称为字符分隔值,因为分隔字符也可以不是逗号),其文件以纯文本形式存储表格数据(数字和文本)。 CSV 是一种通用的、相对简单的文…...

LeetCode算法二叉树—116. 填充每个节点的下一个右侧节点指针

目录 116. 填充每个节点的下一个右侧节点指针 题解: 代码: 运行结果: 给定一个 完美二叉树 ,其所有叶子节点都在同一层,每个父节点都有两个子节点。二叉树定义如下: struct Node {int val;Node *left;N…...

二、2023.9.28.C++基础endC++内存end.2

文章目录 17、说说new和malloc的区别,各自底层实现原理。18、 说说const和define的区别。19、 说说C中函数指针和指针函数的区别?20、 说说const int *a, int const *a, const int a, int *const a, const int *const a分别是什么,有什么特点…...

DevSecOps 将会嵌入 DevOps

通常人们在一个项目行将结束时才会考虑到安全,这么做会导致很多问题;将安全融入到DevOps的工作流中已产生了积极结果。 DevSecOps:安全正当时 一直以来,开发人员在构建软件时认为功能需求优先于安全。虽然安全编码实践起着重要作…...

不同管径地下管线的地质雷达响应特征分析

不同管径地下管线的地质雷达响应特征分析 前言 以混凝土管线为例,建立了不同管径的城市地下管线模型,进行二维地质雷达正演模拟,分析不同管径管线的地质雷达响应特征。 文章目录 不同管径地下管线的地质雷达响应特征分析前言1、管径50cm2、…...

【接口测试学习】白盒测试 接口测试 自动化测试

一、什么是白盒测试 白盒测试是一种测试策略,这种策略允许我们检查程序的内部结构,对程序的逻辑结构进行检查,从中获取测试数据。白盒测试的对象基本是源程序,所以它又称为结构测试或逻辑驱动测试,白盒测试方法一般分为…...

7.网络原理之TCP_IP(下)

文章目录 4.传输层重点协议4.1TCP协议4.1.1TCP协议段格式4.1.2TCP原理4.1.2.1确认应答机制 ACK(安全机制)4.1.2.2超时重传机制(安全机制)4.1.2.3连接管理机制(安全机制)4.1.2.4滑动窗口(效率机制…...

Docker Dockerfile解析

Dockerfile是什么 Dockerfile是用来构建Docker镜像的文本文件,是由一条条构建镜像所需的指令和参数构成的脚本。 官网:Dockerfile reference | Docker Docs 构建三步骤: 编写Dockerfile文件docker build命令构建镜像docker run依镜像运行容…...

浏览器从输入URL到页面展示这个过程中都经历了什么

一. URL输入 URL是统一资源定位符,用于定位互联网上的资源,俗称网址。我们在地址栏输入网址后敲下回车,浏览器会对输入的信息进行以下判断: 1. 检查输入的内容是否是一个合法的URL连接 2. 如果合法的话,则会判断URL…...

2023-09-22 monetdb-事务管理-乐观并发控制-记录

摘要: 2023-09-22 monetdb-事务管理-记录 相关文档: Transaction Management | MonetDB Docs https://en.wikipedia.org/wiki/Optimistic_concurrency_control monetdb事务管理: MonetDB/SQL 支持以 START TRANSACTION 标记并以 COMMIT 或 ROLLBACK 关闭的多语句事务方案。如果…...

蓝桥等考Python组别四级008

第一部分:选择题 1、Python L4 (15分) 字符“D”的ASCII码值比字符“F”的ASCII码值小( )。 1234正确答案:B 2、Python L4 (15分) 下面的Python变量名正…...

SpringMVC 学习(二)Hello SpringMVC

3. Hello SpringMVC (1) 新建 maven 模块 springmvc-02-hellomvc (2) 确认依赖的导入 (3) 配置 web.xml <!--web/WEB-INF/web.xml--> <?xml version"1.0" encoding"UTF-8"?> <web-app xmlns"http://xmlns.jcp.org/xml/ns/javaee…...

交换机之间配置手动|静态链路聚合

两台交换机&#xff0c;配置链路聚合&#xff1a; 1、禁止自动协商速率&#xff0c;配置固定速率 int G0/0/1 undo negotiation auto speed 100int G0/0/2 undo negotiation auto speed 100 2、配置eth-trunk int eth-trunk 1 mode manual | lacp-staticint G0/0/1 eth-trun…...

Shiro高级及SaaS-HRM的认证授权

Shiro在SpringBoot工程的应用 Apache Shiro是一个功能强大、灵活的&#xff0c;开源的安全框架。它可以干净利落地处理身份验证、授权、企业会话管理和加密。越来越多的企业使用Shiro作为项目的安全框架&#xff0c;保证项目的平稳运行。 在之前的讲解中只是单独的使用shiro&…...

eclipse svn插件安装

1.进入eclipse的help->Eclipse Marketplace,如下图所示&#xff1a; 2.输入“svn”,再按回车&#xff0c;如下图&#xff1a; 3.这我选择的是 Subversive,点击后面的“install”按钮&#xff0c;如下图 Eclipse 下连接 SVN 库有两种插件 —— Subclipse 与 Subversive &…...

C语言 cortex-A7核 UART总线 实验

一、C 1&#xff09;uart4.h #ifndef __UART4_H__ #define __UART4_H__ #include "stm32mp1xx_rcc.h" #include "stm32mp1xx_gpio.h" #include "stm32mp1xx_uart.h&quo…...

不同走向地下管线的地质雷达响应特征分析

不同走向地下管线的地质雷达响应特征分析 前言 以PVC管线为例&#xff0c;建立不同走向&#xff08;水平倾斜、垂直倾斜、水平相邻&#xff09;的三维管线地质模型&#xff0c;进行三维地质雷达数据模拟&#xff0c;分析不同走向地下管线的地质雷达响应特征。 文章目录 不同…...

Nginx负载均衡详解

一、负载均衡介绍 1、负载均衡的定义 单体服务器解决不了并发量大的请求&#xff0c;所以&#xff0c;我们可以横向增加服务器的数量&#xff08;集群&#xff09;&#xff0c;然后将请求分发到各个服务器上&#xff0c;将原先请求集中到单个服务器上的情况改为将请求分发到多…...

基于Spring Boot的宠物咖啡馆平台的设计与实现

目录 前言 一、技术栈 二、系统功能介绍 用户信息管理 看护师信息管理 宠物寄养管理 健康状况管理 点单 宠物体验 三、核心代码 1、登录模块 2、文件上传模块 3、代码封装 前言 随着信息技术在管理上越来越深入而广泛的应用&#xff0c;管理信息系统的实施在技术上已…...

TYVJ P1026 犁田机器人

描述 Farmer John為了让自己从无穷无尽的犁田工作中解放出来&#xff0c;於是买了个新机器人帮助他犁田。这个机器人可以完成犁田的任务&#xff0c;可惜有一个小小的缺点&#xff1a;这个犁田机器人一次只能犁一个边的长度是整数的长方形的田地。 因為FJ的田地有树和其他障碍…...

脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)

一、数据处理与分析实战 &#xff08;一&#xff09;实时滤波与参数调整 基础滤波操作 60Hz 工频滤波&#xff1a;勾选界面右侧 “60Hz” 复选框&#xff0c;可有效抑制电网干扰&#xff08;适用于北美地区&#xff0c;欧洲用户可调整为 50Hz&#xff09;。 平滑处理&…...

渗透实战PortSwigger靶场-XSS Lab 14:大多数标签和属性被阻止

<script>标签被拦截 我们需要把全部可用的 tag 和 event 进行暴力破解 XSS cheat sheet&#xff1a; https://portswigger.net/web-security/cross-site-scripting/cheat-sheet 通过爆破发现body可以用 再把全部 events 放进去爆破 这些 event 全部可用 <body onres…...

【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验

系列回顾&#xff1a; 在上一篇中&#xff0c;我们成功地为应用集成了数据库&#xff0c;并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了&#xff01;但是&#xff0c;如果你仔细审视那些 API&#xff0c;会发现它们还很“粗糙”&#xff1a;有…...

【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)

升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点&#xff0c;但无自动故障转移能力&#xff0c;Master宕机后需人工切换&#xff0c;期间消息可能无法读取。Slave仅存储数据&#xff0c;无法主动升级为Master响应请求&#xff…...

【开发技术】.Net使用FFmpeg视频特定帧上绘制内容

目录 一、目的 二、解决方案 2.1 什么是FFmpeg 2.2 FFmpeg主要功能 2.3 使用Xabe.FFmpeg调用FFmpeg功能 2.4 使用 FFmpeg 的 drawbox 滤镜来绘制 ROI 三、总结 一、目的 当前市场上有很多目标检测智能识别的相关算法&#xff0c;当前调用一个医疗行业的AI识别算法后返回…...

华硕a豆14 Air香氛版,美学与科技的馨香融合

在快节奏的现代生活中&#xff0c;我们渴望一个能激发创想、愉悦感官的工作与生活伙伴&#xff0c;它不仅是冰冷的科技工具&#xff0c;更能触动我们内心深处的细腻情感。正是在这样的期许下&#xff0c;华硕a豆14 Air香氛版翩然而至&#xff0c;它以一种前所未有的方式&#x…...

智能AI电话机器人系统的识别能力现状与发展水平

一、引言 随着人工智能技术的飞速发展&#xff0c;AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术&#xff0c;在客户服务、营销推广、信息查询等领域发挥着越来越重要…...

Go 语言并发编程基础:无缓冲与有缓冲通道

在上一章节中&#xff0c;我们了解了 Channel 的基本用法。本章将重点分析 Go 中通道的两种类型 —— 无缓冲通道与有缓冲通道&#xff0c;它们在并发编程中各具特点和应用场景。 一、通道的基本分类 类型定义形式特点无缓冲通道make(chan T)发送和接收都必须准备好&#xff0…...

推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材)

推荐 github 项目:GeminiImageApp(图片生成方向&#xff0c;可以做一定的素材) 这个项目能干嘛? 使用 gemini 2.0 的 api 和 google 其他的 api 来做衍生处理 简化和优化了文生图和图生图的行为(我的最主要) 并且有一些目标检测和切割(我用不到) 视频和 imagefx 因为没 a…...

人机融合智能 | “人智交互”跨学科新领域

本文系统地提出基于“以人为中心AI(HCAI)”理念的人-人工智能交互(人智交互)这一跨学科新领域及框架,定义人智交互领域的理念、基本理论和关键问题、方法、开发流程和参与团队等,阐述提出人智交互新领域的意义。然后,提出人智交互研究的三种新范式取向以及它们的意义。最后,总结…...