在 msys2/mingw 下安装及编译 opencv
最简单就是直接安装
pacman -S mingw-w64-x86_64-opencv
以下记录一下编译的过程
1. 安装编译工具及第三方库
pacman -S --needed base-devel mingw-w64-x86_64-toolchain unzip gccpacman -S python mingw-w64-x86_64-python2 mingw-w64-x86_64-gtk3 mingw-w64-x86_64-boost pacman -S mingw-w64-x86_64-ogre3d mingw-w64-x86_64-gtk3 mingw-w64-x86_64-vtk mingw-w64-x86_64-eigen3 mingw-w64-x86_64-ccache mingw-w64-x86_64-python-numpy mingw-w64-x86_64-julia mingw-w64-x86_64-lapackpacman -S unzip vim cmake gcc wget unzip protobuf pacman -S mingw-w64-x86_64-libpng mingw-w64-x86_64-libjpeg mingw-w64-x86_64-libtiff mingw-w64-x86_64-libwebppacman -S mingw-w64-x86_64-ffmpeg mingw-w64-x86_64-harfbuzz mingw-w64-x86_64-openblas mingw-w64-x86_64-tesseract-ocr mingw-w64-x86_64-tesseract-data-chi_sim mingw-w64-x86_64-tesseract-data-chi_tra
下载 opencv4 源码并解压
wget -O opencv.zip https://github.com/opencv/opencv/archive/4.x.zipwget -O opencv_contrib.zip https://github.com/opencv/opencv_contrib/archive/4.x.zipunzip opencv.zipunzip opencv_contrib.zip
编写脚本 build-open.sh
#!/bin/bash
#
mkdir -p build && cd build
# Configure
export PATH=/mingw64/lib:/mingw64/bin:/mingw64/include:$PATH
cmake -DOPENCV_EXTRA_MODULES_PATH=../opencv_contrib-4.x/modules ../opencv-4.x
# Build
cmake --build . -j 8
由于网络速度慢,有几个文件下载超时,我通过迅雷下载好后
https://raw.githubusercontent.com/opencv/opencv_3rdparty/1224f78da6684df04397ac0f40c961ed37f79ccb/ippicv/ippicv_2021.8_lnx_intel64_20230330_general.tgz
https://raw.githubusercontent.com/opencv/opencv_3rdparty/1224f78da6684df04397ac0f40c961ed37f79ccb/ippicv/ippicv_2021.8_win_intel64_20230330_general.zip
https://github.com/opencv/ade/archive/v0.1.2b.zip
https://raw.githubusercontent.com/opencv/opencv_3rdparty/8afa57abc8229d611c4937165d20e2a2d9fc5a12/face_landmark_model.dat
我通过迅雷下载后,复制到相应目录
cp ippicv_2021.8_lnx_intel64_20230330_general.tgz opencv-4.x/3rdparty/ippicv/
cp ippicv_2021.8_win_intel64_20230330_general.zip opencv-4.x/3rdparty/ippicv/
cp -f ade-0.1.2b.zip opencv-4.x/.cache/ade/4f93a0844dfc463c617d83b09011819a-v0.1.2b.zip
cp face_landmark_model.dat opencv-4.x/.cache/data/7505c44ca4eb54b4ab1e4777cb96ac05-face_landmark_model.dat
相关文章:
在 msys2/mingw 下安装及编译 opencv
最简单就是直接安装 pacman -S mingw-w64-x86_64-opencv 以下记录一下编译的过程 1. 安装编译工具及第三方库 pacman -S --needed base-devel mingw-w64-x86_64-toolchain unzip gccpacman -S python mingw-w64-x86_64-python2 mingw-w64-x86_64-gtk3 mingw-w64-x86_64-…...
java 根据身份证号码判断性别
在Java中,您可以根据身份证号码的规则来判断性别。中国的身份证号码通常采用的是以下规则: 第17位数字代表性别,奇数表示男性,偶数表示女性。 通常,男性的出生日期的第15、16位数字是01,女性是02。 请注意&…...
信息服务上线渗透检测网络安全检查报告和解决方案4(XSS漏洞修复)
系列文章目录 信息服务上线渗透检测网络安全检查报告和解决方案2(安装文件信息泄漏、管理路径泄漏、XSS漏洞、弱口令、逻辑漏洞、终极上传漏洞升级)信息服务上线渗透检测网络安全检查报告和解决方案信息服务上线渗透检测网络安全检查报告和解决方案3(系统漏洞扫描、相对路径覆…...

【SQL】mysql创建定时任务执行存储过程--20230928
1.先设定时区 https://blog.csdn.net/m0_46629123/article/details/133382375 输入命令show variables like “%time_zone%”;(注意分号结尾)设置时区,输入 set global time_zone “8:00”; 回车,然后退出重启(一定记得重启&am…...

安全基础 --- MySQL数据库解析
MySQL的ACID (1)ACID是衡量事务的四个特性 原子性(Atomicity,或称不可分割性)一致性(Consistency)隔离性(Isolation)持久性(Durability) &…...

软件设计师考试学习3
开发模型 瀑布模型 现在基本被淘汰了 是一种结构化方法中的模型,一般用于结构化开发 问题在于需求阶段需求不可能一次搞清楚,很可能做完推翻重做 适用于需求明确或二次开发 原型模型、演化模型、增量模型 原型是为了解决需求不明确的问题 原型在项目…...

使用LDA(线性判别公式)进行iris鸢尾花的分类
线性判别分析((Linear Discriminant Analysis ,简称 LDA)是一种经典的线性学习方法,在二分类问题上因为最早由 [Fisher,1936] 提出,亦称 ”Fisher 判别分析“。并且LDA也是一种监督学习的降维技术,也就是说它的数据集的每个样本都…...

王学岗生成泛型的简易Builder
github大佬地址 使用 //class 可以传参DataBean.classpublic static <T> T handlerJson(String json, Class<T> tClass) {T resultData null;if (CommonUtils.StringNotNull(json) && !nullString.equals(json)) {if (isArray(json)) {resultData BaseN…...
kafka消息队列简单使用
下面是使用Spring Boot和Kafka实现消息队列的简单例子: 引入依赖 在pom.xml中添加以下依赖: <dependency><groupId>org.springframework.kafka</groupId><artifactId>spring-kafka</artifactId><version>2.7.5&l…...
性能优化实战使用CountDownLatch
1.分析问题 原程序是分页查询EventAffinityScoreDO表的数据,每次获取2000条在一个个遍历去更新EventAffinityScoreDO表的数据。但是这样耗时比较慢,测试过30万的数据需要2小时 private void eventSubjectHandle(String tenantId, String eventSubject) …...

基于视频技术与AI检测算法的体育场馆远程视频智能化监控方案
一、方案背景 近年来,随着居民体育运动意识的增强,体育场馆成为居民体育锻炼的重要场所。但使用场馆内的器材时,可能发生受伤意外,甚至牵扯责任赔偿纠纷问题。同时,物品丢失、人力巡逻成本问题突出,体育场…...

leetcodetop100(29) K 个一组翻转链表
K 个一组翻转链表 给你链表的头节点 head ,每 k 个节点一组进行翻转,请你返回修改后的链表。 k 是一个正整数,它的值小于或等于链表的长度。如果节点总数不是 k 的整数倍,那么请将最后剩余的节点保持原有顺序。 你不能只是单纯的改…...

最新影视视频微信小程序源码-带支付和采集功能/微信小程序影视源码PHP(更新)
源码简介: 这个影视视频微信小程序源码,新更新的,它还带支付和采集功能,作为微信小程序影视源码,它可以为用户 提供丰富的影视资源,包括电影、电视剧、综艺节目等。 这个小程序影视源码,还带有…...
C++:vector 定义,用法,作用,注意点
C 中的 vector 是标准模板库(STL)提供的一种动态数组容器,它提供了一组强大的方法来管理和操作可变大小的数组。以下是关于 vector 的定义、用法、作用以及一些注意点: 定义: 要使用 vector,首先需要包含 …...

Firecamp2.7.1exe安装与工具调试向后端发送SocketIO请求
背景: 笔者在python使用socket-io包时需要一个测试工具,选择了firecamp这个测试工具来发送请求。 参考视频与exe资源包: Firecamp2.7.1exe安装包以及基本使用说明文档(以SocketIO为例).zip资源-CSDN文库 15_send方法…...

MySQL到TiDB:Hive Metastore横向扩展之路
作者:vivo 互联网大数据团队 - Wang Zhiwen 本文介绍了vivo在大数据元数据服务横向扩展道路上的探索历程,由实际面临的问题出发,对当前主流的横向扩展方案进行了调研及对比测试,通过多方面对比数据择优选择TiDB方案。其次分享了整…...
算法通关村-----寻找祖先问题
最近公共祖先 问题描述 给定一个二叉树, 找到该树中两个指定节点的最近公共祖先。百度百科中最近公共祖先的定义为:“对于有根树 T 的两个节点 p、q,最近公共祖先表示为一个节点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一…...

Sentinel结合Nacos实现配置持久化(全面)
1、前言 我们在进行分布式系统的开发中,无论是在开发环境还是发布环境,配置一定不能是内存形式的,因为系统可能会在中途宕机或者重启,所以如果放在内存中,那么配置在服务停到就是就会消失,那么此时就需要重…...
Verilog中什么是断言?
断言就是在我们的程序中插入一句代码,这句代码只有仿真的时候才会生效,这段代码的作用是帮助我们判断某个条件是否满足(例如某个数据是否超出了范围),如果条件不满足(数据超出了范围)࿰…...

Oracle分区的使用详解:创建、修改和删除分区,处理分区已满或不存在的插入数据,以及分区历史数据与近期数据的操作指南
一、前言 什么是表分区: Oracle的分区是一种将表或索引数据分割为更小、更易管理的部分的技术。它可以提高查询性能、简化维护操作,并提供更好的数据组织和管理。 表分区和表空间的区别和联系: 在Oracle数据库中,表空间(Tablespace)是用于存储表、索引和其他数据库对…...

Linux应用开发之网络套接字编程(实例篇)
服务端与客户端单连接 服务端代码 #include <sys/socket.h> #include <sys/types.h> #include <netinet/in.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <arpa/inet.h> #include <pthread.h> …...
【论文笔记】若干矿井粉尘检测算法概述
总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

Psychopy音频的使用
Psychopy音频的使用 本文主要解决以下问题: 指定音频引擎与设备;播放音频文件 本文所使用的环境: Python3.10 numpy2.2.6 psychopy2025.1.1 psychtoolbox3.0.19.14 一、音频配置 Psychopy文档链接为Sound - for audio playback — Psy…...

SpringTask-03.入门案例
一.入门案例 启动类: package com.sky;import lombok.extern.slf4j.Slf4j; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; import org.springframework.cache.annotation.EnableCach…...
rnn判断string中第一次出现a的下标
# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...

保姆级教程:在无网络无显卡的Windows电脑的vscode本地部署deepseek
文章目录 1 前言2 部署流程2.1 准备工作2.2 Ollama2.2.1 使用有网络的电脑下载Ollama2.2.2 安装Ollama(有网络的电脑)2.2.3 安装Ollama(无网络的电脑)2.2.4 安装验证2.2.5 修改大模型安装位置2.2.6 下载Deepseek模型 2.3 将deepse…...
Vite中定义@软链接
在webpack中可以直接通过符号表示src路径,但是vite中默认不可以。 如何实现: vite中提供了resolve.alias:通过别名在指向一个具体的路径 在vite.config.js中 import { join } from pathexport default defineConfig({plugins: [vue()],//…...

脑机新手指南(七):OpenBCI_GUI:从环境搭建到数据可视化(上)
一、OpenBCI_GUI 项目概述 (一)项目背景与目标 OpenBCI 是一个开源的脑电信号采集硬件平台,其配套的 OpenBCI_GUI 则是专为该硬件设计的图形化界面工具。对于研究人员、开发者和学生而言,首次接触 OpenBCI 设备时,往…...

消息队列系统设计与实践全解析
文章目录 🚀 消息队列系统设计与实践全解析🔍 一、消息队列选型1.1 业务场景匹配矩阵1.2 吞吐量/延迟/可靠性权衡💡 权衡决策框架 1.3 运维复杂度评估🔧 运维成本降低策略 🏗️ 二、典型架构设计2.1 分布式事务最终一致…...
大数据驱动企业决策智能化的路径与实践
📝个人主页🌹:慌ZHANG-CSDN博客 🌹🌹期待您的关注 🌹🌹 一、引言:数据驱动的企业竞争力重构 在这个瞬息万变的商业时代,“快者胜”的竞争逻辑愈发明显。企业如何在复杂环…...