当前位置: 首页 > news >正文

浅谈wor2vec,RNN,LSTM,Transfermer之间的关系

浅谈wor2vec,RNN,LSTM,Transfermer之间的关系

今天博主谈一谈wor2vec,RNN,LSTM,Transfermer这些方法之间的关系。

首先,我先做一个定位,其实Transfermer是RNN,LSTM,和word2vec的一种“提升版”。这里的提升并不是说他们是一种迭代版本,而是说Transfermer它解决了RNN,LSTM,和word2vec的一些缺点。

下面我们先说一下RNN,LSTM,和word2vec主要i的缺点。
下面是RNN的模型示意图。我们可以很显然的发现,RNN在做一些任务的时候,是一个个的输入一个句子的单词,这样的计算方式,会导致忽略句子内单词之间的内在联系。虽然RNN,和LSTM有这种记忆,可以记忆之前句子留下来的信息,但是这种单向不并行计算方式,还是很大程度上不能考虑句子单词之间的内在联系。
在这里插入图片描述

同样word2vec其实也是如此,word2vec生成的词向量是固定的,这很大的限制了词向量的灵活性、表达能力。同时,我们知道word2vec其实只是从集合的角度去考虑句子内单词之间的联系,没有考虑单词间位置的关系。而且不能根据特定任务去灵活的发挥词向量的表达能力。

所以这两类模型的问题,渐渐的使得研究者去思考更好的模型,transfermer也因此诞生。

在transfermer论文中,作者说过,其实transfermer很大程度上是为了解决长句子的句子间因为有些词语距离太远,当时的很多模型不能很好的去学习词语间的联系这一问题。

transfermer则可以较好的解决这一问题。

那么对于transfermer 其自注意力机制,很特别的一个地方,就是对于一个句子,先对词向量进行一次提取,每一个词语先经过一个V矩阵进行一次提取。然后呢,其再用一个Q矩阵个一个K矩阵对x进行两次信息提取,提取完之后,得到的 q向量和k向量乘积作为V矩阵提取信息的权值。所以,其充分利用了神经网络的强大表征能力。但是也存在冒险,在学习的时候,神经网络需要自己知道Q K矩阵是为了权值而学习的,而V矩阵则是对数据进行最后的信息提取而学习的。我们可以给与transfermer更多的提示,让其对于这三个矩阵的学习更加具有目的性,这样或许可以更好的提升transfermer的学习能力,否则直接让其再目标函数的驱动下去学习这三个矩阵,目的性较弱,且会局限于数据初始化。

相关文章:

浅谈wor2vec,RNN,LSTM,Transfermer之间的关系

浅谈wor2vec,RNN,LSTM,Transfermer之间的关系 今天博主谈一谈wor2vec,RNN,LSTM,Transfermer这些方法之间的关系。 首先,我先做一个定位,其实Transfermer是RNN,LSTM&…...

【11】c++设计模式——>单例模式

单例模式是什么 在一个项目中,全局范围内,某个类的实例有且仅有一个(只能new一次),通过这个唯一的实例向其他模块提供数据的全局访问,这种模式就叫单例模式。单例模式的典型应用就是任务队列。 为什么要使…...

深度学习-卷积神经网络-AlexNET

文章目录 前言1.不同卷积神经网络模型的精度2.不同神经网络概述3.卷积神经网络-单通道4.卷积神经网络-多通道5.池化层6.全连接层7.网络架构8.Relu激活函数9.双GPU10.单GPU模型 1.LeNet-52.AlexNet1.架构2.局部响应归一化(VGG中取消了)3.重叠/不重叠池化4…...

人机关系不是物理关系也不是数理关系

人机关系是一种复杂的社会技术系统,涉及到人类和机器、环境之间的相互作用和影响。它不仅限于物理接触和数理规律,同时还包括了思维、情感、意愿等方面的交流和互动。在人机关系中,人类作为使用者和机器作为工具(将来可能会上升到…...

<html dir=ltr>是什么意思?

<html dirltr>的意思是&#xff1a; 文字默认从左到右排列 说明&#xff1a; HTML--超级文本标记语言 dir 属性 -- (文字的)排列方式属性 取值&#xff1a; ltr -- 代表左到右的排列方式 rtl -- 代表右到左的排列方式 默认值:ltr 示例&#xff1a; ltr左到右的对…...

工厂模式:简化对象创建的设计思想 (设计模式 四)

引言 在软件开发中&#xff0c;我们经常需要创建各种对象实例来满足不同的需求。通常情况下&#xff0c;我们会使用new关键字直接实例化对象&#xff0c;但这种方法存在一些问题&#xff0c;比如对象的创建逻辑分散在代码中&#xff0c;难以维护和扩展&#xff0c;同时也违反了…...

【2023最新】微信小程序中微信授权登录功能和退出登录功能实现讲解

文章目录 一、讲解视频二、小程序前端代码三、后端Java代码四、备注 一、讲解视频 教学视频地址&#xff1a; 视频地址 二、小程序前端代码 // pages/profile/profile.js import api from "../../utils/api"; import { myRequest } from "../../utils/reques…...

复习 --- C++运算符重载

.5 运算符重载 运算符重载概念&#xff1a;对已有的运算符重新进行定义&#xff0c;赋予其另外一种功能&#xff0c;以适应不同的数据类型 4.5.1 加号运算符重载 作用&#xff1a;实现两个自定义数据类型相加的运算 1 #include<iostream>2 using namespace std;3 /…...

复习 --- select并发服务器

selectIO多路复用并发服务器&#xff0c;是通过轮询检测文件描述符来实现并发 将内核要检测文件描述符放入集合中&#xff0c;调用select函数&#xff0c;通知内核区检测文件描述符集合中的文件描述符是否准备就绪&#xff0c;即对应的空间中是否有数据 对准备就绪的文件描述…...

程序三高的方法

程序三高的方法 目录概述需求&#xff1a; 设计思路实现思路分析1.1&#xff09;高并发 参考资料和推荐阅读 Survive by day and develop by night. talk for import biz , show your perfect code,full busy&#xff0c;skip hardness,make a better result,wait for change,c…...

全志ARM926 Melis2.0系统的开发指引⑦

全志ARM926 Melis2.0系统的开发指引⑦ 编写目的11. 调屏11.1. 调屏步骤简介11.1.1. 判断屏接口。11.1.2. 确定硬件连接。11.1.3. 配置显示部分 sys_config.fex11.1.3.1. 配置屏相关 IO 11.1.4. Lcd_panel_cfg.c 初始化文件中配置屏参数11.1.4.1. LCD_cfg_panel_info11.1.4.2. L…...

全志ARM926 Melis2.0系统的开发指引⑧

全志ARM926 Melis2.0系统的开发指引⑧ 编写目的12.5. 应用程序编写12.5.1. 简单应用编写12.5.1.1. 注册应用12.5.1.2. 创建管理窗口12.5.1.3. 实现管理窗口消息处理回调函数12.5.1.4. 创建图层12.5.1.5. 创建 framewin12.5.1.6. 实现 framewin 消息处理回调函数 -. 全志相关工具…...

区别对比表:阿里云轻量服务器和云服务器ECS对照表

阿里云轻量应用服务器和云服务器ECS区别对照表&#xff0c;一看就懂的适用人群、使用场景、优缺点、使用限制、计费方式、网路和镜像系统全方位对比&#xff0c;阿里云服务器网分享ECS和轻量应用服务器区别对照表&#xff1a; 目录 轻量应用服务器和云服务器ECS区别对照表 轻…...

【做题笔记】多项式/FFT/NTT

HDU1402 - A * B Problem Plus 题目链接 大数乘法是多项式的基础应用&#xff0c;其原理是将多项式 f ( x ) a 0 a 1 x a 2 x 2 a 3 x 3 ⋯ a n x n f(x)a_0a_1xa_2x^2a_3x^3\cdotsa_nx^n f(x)a0​a1​xa2​x2a3​x3⋯an​xn中的 x 10 x10 x10&#xff0c;然后让大数的…...

网课搜题 小猿题库多接口微信小程序源码 自带流量主

多接口小猿题库等综合网课搜题微信小程序源码带流量主&#xff0c;网课搜题小程序, 可以开通流量主赚钱 搭建教程1, 微信公众平台注册自己的小程序2, 下载微信开发者工具和小程序的源码3, 上传代码到自己的小程序 源码下载&#xff1a;https://download.csdn.net/download/m0_…...

centos安装conda python3.10

最新版本的conda自带python3.10,直接安装即可。 手动创建一个conda文件夹&#xff0c;进入该文件夹&#xff0c;然后执行以下操作步骤。 1.下载 curl -O https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh2.安装 sh Miniconda3-latest-Linux-x86_64.…...

解密京东面试:如何应对Redis缓存穿透?

亲爱的小伙伴们&#xff0c;大家好&#xff01;欢迎来到小米的微信公众号&#xff0c;今天我们要探讨一个在面试中可能会遇到的热门话题——Redis缓存穿透以及如何解决它。这个话题对于那些渴望进入技术领域的小伙伴们来说&#xff0c;可是必备的哦&#xff01; 认识Redis缓存…...

#力扣:1. 两数之和@FDDLC

1. 两数之和 - 力扣&#xff08;LeetCode&#xff09; 一、Java import java.util.HashMap;class Solution {public int[] twoSum(int[] nums, int target) { //返回数组HashMap<Integer, Integer> map new HashMap<>(); //键&#xff1a;元素值&#xff1b;值&…...

【小沐学Python】各种Web服务器汇总(Python、Node.js、PHP、httpd、Nginx)

文章目录 1、Web服务器2、Python2.1 简介2.2 安装2.3 使用2.3.1 http.server&#xff08;命令&#xff09;2.3.2 socketserver2.3.3 flask2.3.4 fastapi 3、NodeJS3.1 简介3.2 安装3.3 使用3.3.1 http-server&#xff08;命令&#xff09;3.3.2 http3.3.3 express 4、PHP4.1 简…...

【AI视野·今日Robot 机器人论文速览 第四十六期】Tue, 3 Oct 2023

AI视野今日CS.Robotics 机器人学论文速览 Tue, 3 Oct 2023 Totally 76 papers &#x1f449;上期速览✈更多精彩请移步主页 Interesting: &#x1f4da;Aerial Interaction with Tactile, 无人机与触觉的结合&#xff0c;实现空中交互与相互作用。(from CMU) website&#…...

MPNet:旋转机械轻量化故障诊断模型详解python代码复现

目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...

边缘计算医疗风险自查APP开发方案

核心目标:在便携设备(智能手表/家用检测仪)部署轻量化疾病预测模型,实现低延迟、隐私安全的实时健康风险评估。 一、技术架构设计 #mermaid-svg-iuNaeeLK2YoFKfao {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg…...

线程与协程

1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指&#xff1a;像函数调用/返回一样轻量地完成任务切换。 举例说明&#xff1a; 当你在程序中写一个函数调用&#xff1a; funcA() 然后 funcA 执行完后返回&…...

第25节 Node.js 断言测试

Node.js的assert模块主要用于编写程序的单元测试时使用&#xff0c;通过断言可以提早发现和排查出错误。 稳定性: 5 - 锁定 这个模块可用于应用的单元测试&#xff0c;通过 require(assert) 可以使用这个模块。 assert.fail(actual, expected, message, operator) 使用参数…...

VTK如何让部分单位不可见

最近遇到一个需求&#xff0c;需要让一个vtkDataSet中的部分单元不可见&#xff0c;查阅了一些资料大概有以下几种方式 1.通过颜色映射表来进行&#xff0c;是最正规的做法 vtkNew<vtkLookupTable> lut; //值为0不显示&#xff0c;主要是最后一个参数&#xff0c;透明度…...

BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践

6月5日&#xff0c;2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席&#xff0c;并作《智能体在安全领域的应用实践》主题演讲&#xff0c;分享了在智能体在安全领域的突破性实践。他指出&#xff0c;百度通过将安全能力…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

MySQL中【正则表达式】用法

MySQL 中正则表达式通过 REGEXP 或 RLIKE 操作符实现&#xff08;两者等价&#xff09;&#xff0c;用于在 WHERE 子句中进行复杂的字符串模式匹配。以下是核心用法和示例&#xff1a; 一、基础语法 SELECT column_name FROM table_name WHERE column_name REGEXP pattern; …...

基于matlab策略迭代和值迭代法的动态规划

经典的基于策略迭代和值迭代法的动态规划matlab代码&#xff0c;实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...

嵌入式常见 CPU 架构

架构类型架构厂商芯片厂商典型芯片特点与应用场景PICRISC (8/16 位)MicrochipMicrochipPIC16F877A、PIC18F4550简化指令集&#xff0c;单周期执行&#xff1b;低功耗、CIP 独立外设&#xff1b;用于家电、小电机控制、安防面板等嵌入式场景8051CISC (8 位)Intel&#xff08;原始…...