当前位置: 首页 > news >正文

Python:torch.nn.Conv1d(), torch.nn.Conv2d()和torch.nn.Conv3d()函数理解

Python:torch.nn.Conv1d(), torch.nn.Conv2d()和torch.nn.Conv3d()函数理解

1. 函数参数

在torch中的卷积操作有三个,torch.nn.Conv1d(),torch.nn.Conv2d()还有torch.nn.Conv3d(),这是搭建网络过程中常用的网络层,为了用好卷积层,需要知道这些参数代表的含义。

这三种不同的卷积的输入参数是相同的,所以只看一个就可以。

def __init__(self,in_channels: int,out_channels: int,kernel_size: _size_2_t,stride: _size_2_t = 1,padding: Union[str, _size_2_t] = 0,dilation: _size_2_t = 1,groups: int = 1,bias: bool = True,padding_mode: str = 'zeros',  # TODO: refine this typedevice=None,dtype=None

这里面的参数网上有很多说明,重点是怎么理解和使用。

2. 参数理解

这里面重点是in_channels参数,这个是代表数据输入的通道,很多说明这个通道是利用torch.nn.Conv2d处理图片数据来进行说明的,代表的是图片的通道数,然后面的两个参数对应着图片的长度和宽度。

下面是本人对这参数的理解过程:

  • 首先对于torch.nn.Conv函数,所接受的数据是可以带有batch维度的,也可以不带有batch维度,这就表示对于torch.nn.Conv2d可以接受的数据包括3维数据或者4维数据,

如:

conv2 = torch.nn.Conv2d(16, 120, 3, stride=2)
input2_3 = torch.randn(16, 5, 5)
output2_3 = conv2(input2_3)
print(output2_3.shape)input2_4 = torch.randn(20, 16, 5, 5)
output2_4 = conv2(input2_4)
print(output2_4.shape)

该段得到的输出为:

torch.Size([120, 2, 2])
torch.Size([20, 120, 2, 2])

这是因为input2_4只是多了一个维度batch在第一个维度上,如果输入的数据是2维的或者5维的,就会提示如下的错误:指明只能接受3维的数据或者4维的数据.

RuntimeError: Expected 3D (unbatched) or 4D (batched) input to conv2d, but got input of size: [20, 20, 16, 5, 5]

这其实就说明了根据自己数据维度选择合适的torch.nn.Conv, 例如,如果数据是2维的,那么就选择torch.nn.Conv1d,这个可以接收传入的数据维度可以是2维,或者是带有batch维度的3维数据。

之后需要注意的是in_channels参数其实对应的就是传入数据的第一个维度(不带有batch)或者带有batch的第二个维度,这个要和in_channels参数相同。

可以理解成这个in_channels就是表示了有多个卷积核在参与计算,那么剩下的维度正好就是卷积核的维度,

如对于torch.nn.Conv3d,传入的数据最少是4维数据,(不带有batch),那么第一维的数据应该等于in_channels,然后剩下三维正好的是卷积核的维度。
如:

conv3 = torch.nn.Conv3d(16, 120, 3, stride=2)
input3 = torch.randn(16, 5, 5, 5)
output3 = conv3(input3)
print(output3.shape)

会得到

torch.Size([120, 2, 2, 2])

这个卷积核是333,相当于有16个卷积核,每个卷积核在16维的数据上依次计算。

其他的作为输出影响的是数据的维度大小,但是out_channels又决定了输出数据的第一个维度,(不带有batch),就可以依然用这个方式思考。

针对后面几维数据的大小,由其他的参数决定,这个有公式可以计算,懒得算也可以直接打印输出看一下维度。

相关文章:

Python:torch.nn.Conv1d(), torch.nn.Conv2d()和torch.nn.Conv3d()函数理解

Python:torch.nn.Conv1d(), torch.nn.Conv2d()和torch.nn.Conv3d()函数理解 1. 函数参数 在torch中的卷积操作有三个,torch.nn.Conv1d(),torch.nn.Conv2d()还有torch.nn.Conv3d(),这是搭建网络过程中常用的网络层,为了用好卷积层&#xff0…...

scala 连接 MySQL 数据库案例

1 依赖准备 mysql 8添加&#xff1a; <dependency><groupId>mysql</groupId><artifactId>mysql-connector-java</artifactId><version>8.0.29</version></dependency> mysql 5 添加&#xff1a; <dependency><grou…...

guava工具类常用方法

Guava是Google开发的一个Java开源工具类库&#xff0c;它提供了许多实用的工具类和功能&#xff0c;可以简化Java编程中的常见任务。 引入依赖 <dependency><groupId>com.google.guava</groupId><artifactId>guava</artifactId><version>2…...

CSShas伪类选择器案例附注释

<!DOCTYPE html> <html lang="en"> <head><meta charset...

nodejs+vue中医体质的社区居民健康管理系统elementui

可以实现首页、中医体质量表、健康文章、健康视频、我的等&#xff0c;在我的页面可以对医生、小区单元、医疗药品等功能进行操作。目前主要的健康管理系统是以西医为主&#xff0c;而为了传扬中医文化&#xff0c;提高全民健康意识&#xff0c;解决人民日益增长的美好生活需要…...

Kotlin中reified 关键字

前言 在开始之前&#xff0c;让我们先讨论一下泛型。泛型用于为类、函数或接口提供通用的实现。下面是一个示例泛型方法&#xff1a; fun <T> displayValue(value: T) {println(value) }fun main() {displayValue<String>("Generics")displayValue<…...

Linux命令(95)之alias

linux命令之alias 1.alias介绍 linux命令alias是用来将/bin目录下的命令进行别名设置&#xff0c;将一些较长的命令进行简化。 alias命令的作用只局限于该次登入的操作&#xff0c;相当于临时变量。 如果对当前用户永久生效&#xff0c;需修改~/.bashrc文件&#xff0c;使用…...

DHCPsnooping 配置实验(2)

DHCP报文泛洪攻击 限制接收到报文的速率 vlan 视图或者接口视图 dhcp request/ dhcp-rate dhcp snooping check dhcp-request enable dhcp snooping alarm dhcp-request enable dhcp snooping alarm dhcp-request threshold 1 超过则丢弃报文 查看[Huawei]dis dhcp statistic…...

Qt 综合练习小项目--反金币(2/2)

目录 4 选择关卡场景 4.2 背景设置 4.3 创建返回按钮 4.3 返回按钮 4.4 创建选择关卡按钮 4.5 创建翻金币场景 5 翻金币场景 5.1 场景基本设置 5.2 背景设置 5.3 返回按钮 5.4 显示当前关卡 5.5 创建金币背景图片 5.6 创建金币类 5.6.1 创建金币类 MyCoin 5.6.…...

安装matplotlib__pygame,以pycharm调入模块

安装pip 安装matplotlib 安装完毕&#xff0c;终端输入pip list检查 导入模块出现bug&#xff0c;发现不是matplotlib包的问题&#xff0c;pycharm版本貌似不兼容&#xff0c;用python编辑器可正常绘图&#xff0c;pygame也可正常导入。 ​​​​​​​ pycharm版本问题解决 终…...

编写可扩展的软件:架构和设计原则

在今天的软件开发领域&#xff0c;可扩展性是一个至关重要的概念。无论您是开发一个小型应用程序还是一个大规模的软件系统&#xff0c;都需要考虑如何使您的软件能够在不断变化的需求下进行扩展和演进。本文将探讨编写可扩展软件的关键架构和设计原则&#xff0c;以帮助开发人…...

算法-排序算法

0、算法概述 0.1 算法分类 十种常见排序算法可以分为两大类&#xff1a; 比较类排序&#xff1a;通过比较来决定元素间的相对次序&#xff0c;由于其时间复杂度不能突破O(nlogn)&#xff0c;因此也称为非线性时间比较类排序。 非比较类排序&#xff1a;不通过比较来决定元素间…...

Android_Monkey_测试执行策略及标准

一、Monkey命令概述 NO命令说明用法解释1 -p ALLOWED_PACKAGE用于指定某个apk&#xff0c;可以使用多个-p选项&#xff0c;但是每个-p命令选项只能用于一个apk 如果不指定-p&#xff0c;Monkey就会默认进行全系统测试。 -p com.android.contacts可以进行特定apk的Monkey测试2 …...

windows安装nginx

官网提供的下载地址&#xff1a;nginx: download nginx1.25.2下载地址&#xff1a;http://nginx.org/download/nginx-1.25.2.zip 直接运行nginx.exe会闪退&#xff0c;我们还得使用cmd/git bash/power shell 命令进行启动&#xff1b; 个人更喜欢git bash&#xff1b; 运行命…...

Java日期的学习篇

关于日期的学习 目录 关于日期的学习JDK8以前的APIDate Date常用APIDate的API应用 SimpleDateFormatSimpleDateFormat常用API测试 反向格式化(逆操作)测试 训练案例需求(秒杀活动)实现 Calendar需求痛点常见API应用测试 JDK8及以后的API(修改与新增)为啥学习(推荐使用)新增的AP…...

spark on hive

需要提前搭建好hive&#xff0c;并对hive进行配置。 1、将hive的配置文件添加到spark的目录下 cp $HIVE_HOME/conf/hive-site.xml $SPARK_HOME/conf2、开启hive的hivemetastore服务 提前创建好启动日志存放路径 mkdir $HIVE_HOME/logStart nohup /usr/local/lib/apache-hi…...

Linux Vi编辑器基础操作指南

Linux Vi编辑器基础操作指南 Linux中的Vi是一个强大的文本编辑器&#xff0c;虽然它有一些陡峭的学习曲线&#xff0c;但一旦掌握了基本操作&#xff0c;它就变得非常高效。以下是Vi编辑器的一些基本用法&#xff1a; 打开Vi编辑器&#xff1a; vi 文件名退出Vi编辑器&#xff…...

WEB3 创建React前端Dapp环境并整合solidity项目,融合项目结构便捷前端拿取合约 Abi

好 各位 经过我们上文 WEB3 solidity 带着大家编写测试代码 操作订单 创建/取消/填充操作 我们自己写了一个测试订单业务的脚本 没想到运行的还挺好的 那么 今天开始 我们就可以开始操作我们前端 Dapp 的一个操作了 在整个过程中 确实是没有我们后端的操作 或者说 我们自己就…...

rust运算

不同类型不能放在一起运算。如果非要计算&#xff0c;必须先强转成一个类型再运算。 一 、数字运算 &#xff08;一&#xff09;算术运算 a 10且b 5 名称运算符范例加ab的结果为15减-a-b的结果为5乘*a*b的结果为50除/a / b的结果为2求余%a % b的结果为0 Rust语言不支持自增…...

游戏引擎,脚本管理模块

编辑器中删除脚本&#xff0c;然后立即恢复删除的脚本关系正常编辑器中删除脚本&#xff0c;关掉编辑器&#xff0c;然后只恢复脚本&#xff0c;不恢复meta,然后再打开编辑器关系丢失编辑器中删除脚本&#xff0c;关掉编辑器&#xff0c;然后恢复脚本且恢复meta,然后再打开编辑…...

业务系统对接大模型的基础方案:架构设计与关键步骤

业务系统对接大模型&#xff1a;架构设计与关键步骤 在当今数字化转型的浪潮中&#xff0c;大语言模型&#xff08;LLM&#xff09;已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中&#xff0c;不仅可以优化用户体验&#xff0c;还能为业务决策提供…...

树莓派超全系列教程文档--(62)使用rpicam-app通过网络流式传输视频

使用rpicam-app通过网络流式传输视频 使用 rpicam-app 通过网络流式传输视频UDPTCPRTSPlibavGStreamerRTPlibcamerasrc GStreamer 元素 文章来源&#xff1a; http://raspberry.dns8844.cn/documentation 原文网址 使用 rpicam-app 通过网络流式传输视频 本节介绍来自 rpica…...

如何在看板中体现优先级变化

在看板中有效体现优先级变化的关键措施包括&#xff1a;采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中&#xff0c;设置任务排序规则尤其重要&#xff0c;因为它让看板视觉上直观地体…...

Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件

今天呢&#xff0c;博主的学习进度也是步入了Java Mybatis 框架&#xff0c;目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学&#xff0c;希望能对大家有所帮助&#xff0c;也特别欢迎大家指点不足之处&#xff0c;小生很乐意接受正确的建议&…...

MVC 数据库

MVC 数据库 引言 在软件开发领域,Model-View-Controller(MVC)是一种流行的软件架构模式,它将应用程序分为三个核心组件:模型(Model)、视图(View)和控制器(Controller)。这种模式有助于提高代码的可维护性和可扩展性。本文将深入探讨MVC架构与数据库之间的关系,以…...

【配置 YOLOX 用于按目录分类的图片数据集】

现在的图标点选越来越多&#xff0c;如何一步解决&#xff0c;采用 YOLOX 目标检测模式则可以轻松解决 要在 YOLOX 中使用按目录分类的图片数据集&#xff08;每个目录代表一个类别&#xff0c;目录下是该类别的所有图片&#xff09;&#xff0c;你需要进行以下配置步骤&#x…...

CMake 从 GitHub 下载第三方库并使用

有时我们希望直接使用 GitHub 上的开源库,而不想手动下载、编译和安装。 可以利用 CMake 提供的 FetchContent 模块来实现自动下载、构建和链接第三方库。 FetchContent 命令官方文档✅ 示例代码 我们将以 fmt 这个流行的格式化库为例,演示如何: 使用 FetchContent 从 GitH…...

(转)什么是DockerCompose?它有什么作用?

一、什么是DockerCompose? DockerCompose可以基于Compose文件帮我们快速的部署分布式应用&#xff0c;而无需手动一个个创建和运行容器。 Compose文件是一个文本文件&#xff0c;通过指令定义集群中的每个容器如何运行。 DockerCompose就是把DockerFile转换成指令去运行。 …...

如何在最短时间内提升打ctf(web)的水平?

刚刚刷完2遍 bugku 的 web 题&#xff0c;前来答题。 每个人对刷题理解是不同&#xff0c;有的人是看了writeup就等于刷了&#xff0c;有的人是收藏了writeup就等于刷了&#xff0c;有的人是跟着writeup做了一遍就等于刷了&#xff0c;还有的人是独立思考做了一遍就等于刷了。…...

CVE-2020-17519源码分析与漏洞复现(Flink 任意文件读取)

漏洞概览 漏洞名称&#xff1a;Apache Flink REST API 任意文件读取漏洞CVE编号&#xff1a;CVE-2020-17519CVSS评分&#xff1a;7.5影响版本&#xff1a;Apache Flink 1.11.0、1.11.1、1.11.2修复版本&#xff1a;≥ 1.11.3 或 ≥ 1.12.0漏洞类型&#xff1a;路径遍历&#x…...