当前位置: 首页 > news >正文

【Pm4py第八讲】关于Statistics

本节用于介绍pm4py中的统计函数,包括统计轨迹变体、案例持续时间、案例到达时间等。

1.函数概述

 本次主要介绍Pm4py中一些常见的统计函数,总览如下表:

函数名说明
pm4py.stats.get_start_activities()从事件日志中获取开始活动。
pm4py.stats.get_end_activities()从事件日志中获取结束活动。
pm4py.stats.get_event_attributes()获取事件的事件级的属性
pm4py.stats.get_trace_attributes()获取事件轨迹级别的属性
pm4py.stats.get_event_attribute_values()获取事件中某个属性的值
pm4py.stats.get_trace_attribute_values()获取轨迹中的属性值
pm4py.stats.get_case_arrival_average()获取事件的案件到达时间列表
pm4py.stats.get_cycle_time()获取事件的周期时间
pm4py.stats.get_all_case_durations()获取事件的案件持续时间列表
pm4py.stats.get_case_duration()获取日志中特定案例的案例持续时间。
pm4py.stats.get_stochastic_language()获取事件日志的随机语言

2.函数方法介绍

2.1 统计开始活动

pm4py.stats.get_start_activities(log: EventLog | DataFrame, activity_key: str = 'concept:name', timestamp_key: str = 'time:timestamp', case_id_key: str = 'case:concept:name') → Dict[str, int]
说明:返回日志对象的开始活动

输入参数:

      log–log对象
     activity_key(str)–要用于活动的属性
     timestamp_key(str)–用于时间戳的属性
      case_id_key(str)–要用作案例标识符的属性

输出参数:

        Dict[str, int]

示例代码:

import pm4pystart_activities = pm4py.get_start_activities(dataframe, activity_key='concept:name', case_id_key='case:concept:name', timestamp_key='time:timestamp')

2.2 统计日志对象的结束活动

pm4py.stats.get_end_activities(log: EventLog | DataFrame, activity_key: str = 'concept:name', timestamp_key: str = 'time:timestamp', case_id_key: str = 'case:concept:name') → Dict[str, int]

说明:返回日志对象的结束活动

输入参数:

      log–log对象
      activity_key(str)–要用于活动的属性
      timestamp_key(str)–用于时间戳的属性
       case_id_key(str)–要用作案例标识符的属性

输出参数:

        Dict[str, int]

示例代码:

import pm4pyend_activities = pm4py.get_end_activities(dataframe, activity_key='concept:name', case_id_key='case:concept:name', timestamp_key='time:timestamp')

2.3 统计事件属性

pm4py.stats.get_event_attributes(log: EventLog | DataFrame) → List[str]
说明:统计事件属性

输入参数
   log–log对象现可视化效果)
输出参数:

   List[str]

示例代码:

import pm4pyevent_attributes = pm4py.get_event_attributes(dataframe)

2.4 统计轨迹属性

pm4py.stats.get_trace_attributes(log: EventLog | DataFrame) → List[str]
说明:统计轨迹属性

输入参数
   log–log对象现可视化效果)
输出参数:

   List[str]

示例代码:

import pm4pytrace_attributes = pm4py.get_trace_attributes(dataframe)

2.5 统计事件属性值

pm4py.stats.get_event_attribute_values(log: EventLog | DataFrameattribute: strcount_once_per_case=Falsecase_id_key: str = 'case:concept:name') → Dict[str, int]


说明:统计事件属性值

输入参数:
        log–log对象
        attribute(str)–attribute
        count_once_per_case(bool)–如果为True,则只考虑案例中给定属性值的一次出现(如果有多个事件共享同一属性值,则只计算一次出现)
        case_id_key(str)–要用作案例标识符的属性
输出类型:
    
    Dict[str,int]

示例代码:

import pm4pyactivities = pm4py.get_event_attribute_values(dataframe, 'concept:name', case_id_key='case:concept:name')

2.6 统计指定轨迹属性的值

pm4py.stats.get_trace_attribute_values(log: EventLog | DataFrame, attribute: str, case_id_key: str = 'case:concept:name') → Dict[str, int]

说明:返回指定跟踪属性的值
输入参数:
        log–log对象
        attribute(str)–属性
        case_id_key(str)–要用作案例标识符的属性
输出类型:
        Dict[str,int]

 示例代码:

import pm4pytr_attr_values = pm4py.get_trace_attribute_values(dataframe, 'case:attribute', case_id_key='case:concept:name')

2.7 统计日志变体

pm4py.stats.get_variants(log: EventLog | DataFrame, activity_key: str = 'concept:name', timestamp_key: str = 'time:timestamp', case_id_key: str = 'case:concept:name') → Dict[Tuple[str], List[Trace]]

说明:从日志中获取变体
输入参数:

        log–事件日志
        activity_key(str)–要用于活动的属性
        timestamp_key(str)–用于时间戳的属性
        case_id_key(str)–要用作案例标识符的属性
输出类型:
 
       Dict[Tuple[str],List[Trace]]

 示例代码:

import pm4pyvariants = pm4py.get_variants(dataframe, activity_key='concept:name', case_id_key='case:concept:name', timestamp_key='time:timestamp')

2.8 统计日志变体2

pm4py.stats.get_variants_as_tuples(log: EventLog | DataFrame, activity_key: str = 'concept:name', timestamp_key: str = 'time:timestamp', case_id_key: str = 'case:concept:name') → Dict[Tuple[str], List[Trace]]

说明:从日志中获取变体(其中键是元组而不是字符串)
输入参数:

      log–事件日志
      activity_key(str)–要用于活动的属性
      timestamp_key(str)–用于时间戳的属性
      case_id_key(str)–要用作案例标识符的属性
输出类型:
        Dict[Tuple[str],List[Trace]]

示例代码:

import pm4pyvariants = pm4py.get_variants_as_tuples(dataframe, activity_key='concept:name', case_id_key='case:concept:name', timestamp_key='time:timestamp')

 2.9 统计活动的自距离

pm4py.stats.get_minimum_self_distances(log: EventLog | DataFrame, activity_key: str = 'concept:name', timestamp_key: str = 'time:timestamp', case_id_key: str = 'case:concept:name') → Dict[str, int]

说明:该算法计算在事件日志中观察到的每个活动的最小自身距离。a在<a>中的自距离为无穷大,a在<a、a>中为0,在<a,b、a>为1,等等。最小自距离是事件日志中观察到的最小自距离值。
输入参数:
        log–事件日志(pandas.DataFrame、EventLog或EventStream)
        activity_key(str)–要用于活动的属性
        timestamp_key(str)–用于时间戳的属性
        case_id_key(str)–要用作案例标识符的属性
输出类型:
        Dict[str,int]

示例代码:

import pm4pymsd = pm4py.get_minimum_self_distances(dataframe, activity_key='concept:name', case_id_key='case:concept:name', timestamp_key='time:timestamp')timestamp')

2.10 统计活动自距离见证人

pm4py.stats.get_minimum_self_distance_witnesses(log: EventLog | DataFrame, activity_key: str = 'concept:name', timestamp_key: str = 'time:timestamp', case_id_key: str = 'case:concept:name') → Dict[str, Set[str]]

说明:此函数导出最小自距离见证人。a在<a>中的自距离为无穷大,a在<a、a>中为0,在<a,b、a>为1,等等。最小自距离是事件日志中观察到的最小自距离值。“见证人”是见证自我距离最小的活动。例如,如果某个日志L中活动a的最小自距离是2,那么,如果轨迹<a,b,c,a>在日志L中,b和c是a的见证
输入参数:

        log–要使用的事件日志
        activity_key(str)–要用于活动的属性
        timestamp_key(str)–用于时间戳的属性
        case_id_key(str)–要用作案例标识符的属性
输出类型:
        Dict[str,Set[str]]

示例代码

import pm4pymsd_wit = pm4py.get_minimum_self_distance_witnesses(dataframe, activity_key='concept:name', case_id_key='case:concept:name', timestamp_key='time:timestamp')

2.11 统计案例到达时间

pm4py.stats.get_case_arrival_average(log: EventLog | DataFrame, activity_key: str = 'concept:name', timestamp_key: str = 'time:timestamp', case_id_key: str = 'case:concept:name') → float

说明:获取两个连续事例的开始时间之间的平均差值
输入参数:
        log–log对象
        activity_key(str)–要用于活动的属性
        timestamp_key(str)–用于时间戳的属性
        case_id_key(str)–要用作案例标识符的属性
返回类型:
        float

示例代码:

import pm4pycase_arr_avg = pm4py.get_case_arrival_average(dataframe, activity_key='concept:name', case_id_key='case:concept:name', timestamp_key='time:timestamp')

2.12  统计返工活动

pm4py.stats.get_rework_cases_per_activity(log: EventLog | DataFrame, activity_key: str = 'concept:name', timestamp_key: str = 'time:timestamp', case_id_key: str = 'case:concept:name') → Dict[str, int]

说明:找出日志中哪些活动发生了返工(该活动的轨迹中出现了多个)。输出是一个字典,将发生返工的案例数量与上述每个活动相关联。
输入参数:
        log–log对象
        activity_key(str)–要用于活动的属性
        timestamp_key(str)–用于时间戳的属性
        case_id_key(str)–要用作案例标识符的属性
返回类型:
        Dict[str,int]

示例代码:

import pm4pyrework = pm4py.get_rework_cases_per_activity(dataframe, activity_key='concept:name', case_id_key='case:concept:name', timestamp_key='time:timestamp')

2.13 统计日志的周期时间

pm4py.stats.get_cycle_time(log: EventLog | DataFrame, activity_key: str = 'concept:name', timestamp_key: str = 'time:timestamp', case_id_key: str = 'case:concept:name') → float

说明:计算事件日志的周期时间。
所遵循的定义是在中提出的定义:https://www.presentationeze.com/presentations/lean-manufacturing-just-in-time/lean-manufacturing-just-in-time-full-details/process-cycle-time-analysis/calculate-cycle-time/#:~:text=Cycle%20time%20%3D%20Average%20time%20between,is%2024%20minutes%20on%20average。
因此:周期时间=单位完成之间的平均时间。
网站上的例子:考虑一个制造厂,它每40小时生产100个产品。平均吞吐率为每0.4小时1台,即每24分钟1台。因此,周期时间平均为24分钟。
输入参数:
        log–log对象
        activity_key(str)–要用于活动的属性
        timestamp_key(str)–用于时间戳的属性
        case_id_key(str)–要用作案例标识符的属性
返回类型:
        float

示例代码:

import pm4pycycle_time = pm4py.get_cycle_time(dataframe, activity_key='concept:name', case_id_key='case:concept:name', timestamp_key='time:timestamp')

2.14 统计案例的持续时间

pm4py.stats.get_all_case_durations(log: EventLog | DataFrame, business_hours: bool = False, business_hour_slots=[(25200, 61200), (111600, 147600), (198000, 234000), (284400, 320400), (370800, 406800)], activity_key: str = 'concept:name', timestamp_key: str = 'time:timestamp', case_id_key: str = 'case:concept:name') → List[float]

说明:获取事件日志中事例的持续时间
输入参数:
        log–事件日志
        business_hours(bool)–启用/禁用基于营业时间的计算(默认值:False)
        business_hour_slots–公司的工作时间表,以元组列表的形式提供,其中每个元组表示一个工作时间段。一个槽,即一个元组,由一个开始时间和一个结束时间组成,以秒为单位,从周开始,例如[(7*60*60,17*60*60],((24+7)*60*60%,(24+12)*60=60),((24/13)*60*60,(24+17)*60*50],这意味着营业时间为周一07:00-17:00,周二07:00-12:00和13:00-17:00
        activity_key(str)–要用于活动的属性
        timestamp_key(str)–用于时间戳的属性
        case_id_key(str)–要用作案例标识符的属性
返回类型:

        List[float]

示例代码:

import pm4pycase_durations = pm4py.get_all_case_durations(dataframe, activity_key='concept:name', case_id_key='case:concept:name', timestamp_key='time:timestamp')

2.15 统计特定案例的持续时间

pm4py.stats.get_case_duration(log: EventLog | DataFrame, case_id: str, business_hours: bool = False, business_hour_slots=[(25200, 61200), (111600, 147600), (198000, 234000), (284400, 320400), (370800, 406800)], activity_key: str = 'concept:name', timestamp_key: str = 'time:timestamp', case_id_key: str | None = None) → float

说明:获取事件日志中特定事例的持续时间
输入参数:
        log–事件日志
        business_hours(bool)–启用/禁用基于营业时间的计算(默认值:False)
        business_hour_slots–公司的工作时间表,以元组列表的形式提供,其中每个元组表示一个工作时间段。一个槽,即一个元组,由一个开始时间和一个结束时间组成,以秒为单位,从周开始,例如[(7*60*60,17*60*60],((24+7)*60*60%,(24+12)*60=60),((24/13)*60*60,(24+17)*60*50],这意味着营业时间为周一07:00-17:00,周二07:00-12:00和13:00-17:00
        activity_key(str)–要用于活动的属性
        timestamp_key(str)–用于时间戳的属性
        case_id_key(str)–要用作案例标识符的属性
返回类型:

        List[float]

示例代码:

import pm4pyduration = pm4py.get_case_duration(dataframe, 'case 1', activity_key='concept:name', case_id_key='case:concept:name', timestamp_key='time:timestamp')

2.16 统计活动位置次数

pm4py.stats.get_activity_position_summary(log: EventLog | DataFrame, activity: str, activity_key: str = 'concept:name', timestamp_key: str = 'time:timestamp', case_id_key: str = 'case:concept:name') → Dict[int, int]

说明:给定一个事件日志,返回一个字典,其中总结了活动在事件日志的不同情况下的位置。例如,如果一个活动在位置1发生1000次(案例的第二个事件),在位置2发生500次(案件的第三个事件)时,则返回的字典为:{1/1000,2:500}
输入参数:
        log–事件日志对象/Pandas数据帧
        activity(str)–要考虑的活动
        activity_key(str)–要用于活动的属性
        timestamp_key(str)–用于时间戳的属性
        case_id_key(str)–要用作案例标识符的属性
返回类型:

        Dict[int, int]

示例代码:

import pm4pyact_pos = pm4py.get_activity_position_summary(dataframe, 'Act. A', activity_key='concept:name', case_id_key='case:concept:name', timestamp_key='time:timestamp')

2.17 获取随机语言

pm4py.stats.get_stochastic_language(*args, **kwargs) → Dict[List[str], float]

说明:从提供的日志对象中获取随机语言
输入参数:
        args–Pandas数据帧/事件日志/接受Petri网/过程树
        kwargs–关键字参数

返回类型:

        Dict[List[str], float]

示例代码:

import pm4pylog = pm4py.read_xes('tests/input_data/running-example.xes')
language_log = pm4py.get_stochastic_language(log)
print(language_log)
net, im, fm = pm4py.read_pnml('tests/input_data/running-example.pnml')
language_model = pm4py.get_stochastic_language(net, im, fm)
print(language_model)

如需了解更多,欢迎加入流程挖掘交流群QQ:671290481.

相关文章:

【Pm4py第八讲】关于Statistics

本节用于介绍pm4py中的统计函数&#xff0c;包括统计轨迹变体、案例持续时间、案例到达时间等。 1.函数概述 本次主要介绍Pm4py中一些常见的统计函数&#xff0c;总览如下表&#xff1a; 函数名说明pm4py.stats.get_start_activities()从事件日志中获取开始活动。pm4py.stats.…...

【Azure 架构师学习笔记】-Azure Data Factory (5) --Data Flow

本文属于【Azure 架构师学习笔记】系列。 本文属于【Azure Data Factory】系列。 接上文【Azure 架构师学习笔记】-Azure Data Factory (4)-触发器详解-事件触发器 前言 Azure Data Factory&#xff0c; ADF 是微软Azure 的ETL 首选服务之一&#xff0c; 是Azure data platfor…...

uniapp之ios开发及支付整体流程爬坑记录

前言 在写这篇记录的时候&#xff0c;关于ios的支付已经对接的差不多了&#xff0c;下一步就是测试好了直接发版&#xff0c;总共花了好几周的时间&#xff0c;从0到1对于首次做ios支付来说&#xff0c;确实很多坑。 其实业务层面很简单&#xff0c;甚至比安卓支付还简单&…...

AutoDL百川大模型体验

文章目录 镜像克隆模型下载测试效果AutoDL自定义服务 感谢AutoDL和CodeWithGPU这两个平台&#xff0c;让我们能低成本&#xff0c;低门槛地部署体验这些大模型 镜像克隆 我是在CodeWithGPU上克隆的这个镜像 模型下载 codewithgpu有介绍 注意这三个文件都需要下载 把那个&quo…...

蓝桥杯每日一题2023.10.8

题目描述 七段码 - 蓝桥云课 (lanqiao.cn) 题目分析 所有的情况我们可以分析出来一共有2的7次方-1种&#xff0c;因为每一个二极管都有选择和不选择两种情况&#xff0c;有7个二极管&#xff0c;但是还有一种都不选的情况需要排除&#xff0c;故-1 枚举每个方案看是否符合要…...

jmeter,性能测试,Locust

一。性能测试的概念 1.性能&#xff1a;就是软件质量属性中的 “ 效率 ” 特性 2.效率特性&#xff1a; 时间特性&#xff1a;指系统处理用户请求的响应时间 资源特性&#xff1a;指系统在运行过程中&#xff0c;系统资源的消耗情况 CPU 内存 磁盘IO&#xff08;磁盘的写…...

opencv图像的直方图,二维直方图,直方图均衡化

文章目录 opencv图像的直方图&#xff0c;二维直方图&#xff0c;直方图均衡化一、图像的直方图1、什么是图像的直方图&#xff1a;2、直方图的作用&#xff1a;3、如何绘制图像的直方图&#xff1a;&#xff08;1&#xff09;cv::calcHist()函数原型&#xff1a;英文单词 calc…...

c++中的map和set

文章目录 1. 关联式容器2. 键值对3. 树形结构的关联式容器3.1 set3.1.1 set的介绍3.1.2 set的使用 3.2 map3.2.1 map的介绍3.2.2 map的使用 3.3 multiset3.3.1 multiset的介绍3.3.2 multiset的使用 3.4 multimap3.4.1 multimap的介绍3.4.2 multimap的使用 1. 关联式容器 在初阶…...

Swagger使用详解

目录 一、简介 二、SwaggerTest项目搭建 1. pom.xml 2. entity类 3. controller层 三、基本使用 1. 导入相关依赖 2. 编写配置文件 2.1 配置基本信息 2.2 配置接口信息 2.3 配置分组信息 2.3.1 分组名修改 2.3.2 设置多个分组 四、常用注解使用 1. ApiModel 2.A…...

ToBeWritten之车联网安全中常见的TOP 10漏洞

也许每个人出生的时候都以为这世界都是为他一个人而存在的&#xff0c;当他发现自己错的时候&#xff0c;他便开始长大 少走了弯路&#xff0c;也就错过了风景&#xff0c;无论如何&#xff0c;感谢经历 转移发布平台通知&#xff1a;将不再在CSDN博客发布新文章&#xff0c;敬…...

软考-密码学概述

本文为作者学习文章&#xff0c;按作者习惯写成&#xff0c;如有错误或需要追加内容请留言&#xff08;不喜勿喷&#xff09; 本文为追加文章&#xff0c;后期慢慢追加 by 2023年10月 密码学基本概念 密码学的主要目的是保持明文的秘密以防止攻击者获知&#xff0c;而密码分…...

windows 2003、2008远程直接关闭远程后设置自动注销会话

1、2003系统&#xff1a; 按开始—运行—输入“tscc.msc”&#xff0c;打开“终端服务配置”。 单击左边窗口的“连接”项&#xff0c;右边窗口中右击“RDP-TCP”&#xff0c;选择“属性”。 单击“会话”项&#xff0c;勾选“替代用户设置”&#xff0c;在“结束已断开的会话”…...

iOS BUG UIView转UIImage模糊失真

iOS BUG UIView转UIImage模糊失真 ##UIView转成Image - (UIImage *)capture {UIGraphicsBeginImageContextWithOptions(self.bounds.size, YES, 0.0);[self.layer renderInContext:UIGraphicsGetCurrentContext()];UIImage *img UIGraphicsGetImageFromCurrentImageContext(…...

如何在10分钟内让Android应用大小减少 60%?

一个APP的包之所以大&#xff0c;主要包括一下文件 代码libso本地库资源文件&#xff08;图片&#xff0c;音频&#xff0c;字体等&#xff09; 瘦身就主要瘦这些。 一、打包的時候刪除不用的代码 buildTypes {debug {...shrinkResources true // 是否去除无效的资源文件(如…...

网络代理技术:保障隐私与增强安全

在当今数字化的世界中&#xff0c;网络代理技术的重要性日益凸显。无论您是普通用户还是网络工程师&#xff0c;了解如何使用代理技术来保护隐私和增强网络安全都是至关重要的。本文将深入探讨Socks5代理、IP代理以及它们在网络安全和隐私保护中的关键作用。 1. Socks5代理&am…...

数据结构 | (二) List

什么是 List 在集合框架中&#xff0c; List 是一个接口&#xff0c;继承自 Collection 。 Collection 也是一个接口 &#xff0c;该接口中规范了后序容器中常用的一些方法&#xff0c;具体如下所示&#xff1a; Iterable 也是一个接口&#xff0c;表示实现该接口的类是可以逐个…...

[NewStarCTF 2023 公开赛道] week1 Crypto

brainfuck 题目描述&#xff1a; [>>>>>>>>>>>>>>>><<<<<<<<<<<<<<<<-]>>>>>>>.>----.<-----.>-----.>-----.<<<-.>>..…...

C语言中文网 - Shell脚本 - 0

教程目录如下&#xff1a; 第1章 Shell基础&#xff08;开胃菜&#xff09; 1. Shell是什么&#xff1f;1分钟理解Shell的概念&#xff01; 2. Shell是运维人员必须掌握的技能 3. 常用的Shell有哪些&#xff1f; 4. 进入Shell的两种方式 5. Linux Shell命令的基本格式 6.…...

Transformer预测 | Pytorch实现基于Transformer 的锂电池寿命预测(CALCE数据集)

文章目录 效果一览文章概述模型描述程序设计参考资料效果一览 文章概述 Pytorch实现基于Transformer 的锂电池寿命预测,环境为pytorch 1.8.0,pandas 0.24.2 随着充放电次数的增加,锂电池的性能逐渐下降。电池的性能可以用容量来表示,故寿命预测 (RUL) 可以定义如下: SOH(t…...

2023年【通信安全员ABC证】找解析及通信安全员ABC证考试总结

题库来源&#xff1a;安全生产模拟考试一点通公众号小程序 通信安全员ABC证找解析参考答案及通信安全员ABC证考试试题解析是安全生产模拟考试一点通题库老师及通信安全员ABC证操作证已考过的学员汇总&#xff0c;相对有效帮助通信安全员ABC证考试总结学员顺利通过考试。 1、【…...

Docker 离线安装指南

参考文章 1、确认操作系统类型及内核版本 Docker依赖于Linux内核的一些特性&#xff0c;不同版本的Docker对内核版本有不同要求。例如&#xff0c;Docker 17.06及之后的版本通常需要Linux内核3.10及以上版本&#xff0c;Docker17.09及更高版本对应Linux内核4.9.x及更高版本。…...

[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解

突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 ​安全措施依赖问题​ GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...

Java 语言特性(面试系列1)

一、面向对象编程 1. 封装&#xff08;Encapsulation&#xff09; 定义&#xff1a;将数据&#xff08;属性&#xff09;和操作数据的方法绑定在一起&#xff0c;通过访问控制符&#xff08;private、protected、public&#xff09;隐藏内部实现细节。示例&#xff1a; public …...

椭圆曲线密码学(ECC)

一、ECC算法概述 椭圆曲线密码学&#xff08;Elliptic Curve Cryptography&#xff09;是基于椭圆曲线数学理论的公钥密码系统&#xff0c;由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA&#xff0c;ECC在相同安全强度下密钥更短&#xff08;256位ECC ≈ 3072位RSA…...

PHP和Node.js哪个更爽?

先说结论&#xff0c;rust完胜。 php&#xff1a;laravel&#xff0c;swoole&#xff0c;webman&#xff0c;最开始在苏宁的时候写了几年php&#xff0c;当时觉得php真的是世界上最好的语言&#xff0c;因为当初活在舒适圈里&#xff0c;不愿意跳出来&#xff0c;就好比当初活在…...

Golang dig框架与GraphQL的完美结合

将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用&#xff0c;可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器&#xff0c;能够帮助开发者更好地管理复杂的依赖关系&#xff0c;而 GraphQL 则是一种用于 API 的查询语言&#xff0c;能够提…...

MODBUS TCP转CANopen 技术赋能高效协同作业

在现代工业自动化领域&#xff0c;MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步&#xff0c;这两种通讯协议也正在被逐步融合&#xff0c;形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...

Robots.txt 文件

什么是robots.txt&#xff1f; robots.txt 是一个位于网站根目录下的文本文件&#xff08;如&#xff1a;https://example.com/robots.txt&#xff09;&#xff0c;它用于指导网络爬虫&#xff08;如搜索引擎的蜘蛛程序&#xff09;如何抓取该网站的内容。这个文件遵循 Robots…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个生活电费的缴纳和查询小程序

一、项目初始化与配置 1. 创建项目 ohpm init harmony/utility-payment-app 2. 配置权限 // module.json5 {"requestPermissions": [{"name": "ohos.permission.INTERNET"},{"name": "ohos.permission.GET_NETWORK_INFO"…...

k8s业务程序联调工具-KtConnect

概述 原理 工具作用是建立了一个从本地到集群的单向VPN&#xff0c;根据VPN原理&#xff0c;打通两个内网必然需要借助一个公共中继节点&#xff0c;ktconnect工具巧妙的利用k8s原生的portforward能力&#xff0c;简化了建立连接的过程&#xff0c;apiserver间接起到了中继节…...