当前位置: 首页 > news >正文

Fourier变换中的能量积分及其详细证明过程

Fourier变换中的能量积分及其详细证明过程

在使用Fourier变换分析信号时候,有时需要用到能量积分。本文对Fourier变换的能量积分进行分析。

一、Fourier变换中的能量积分

F ( ω ) = F [ f ( t ) ] F(\omega)=\mathscr F[f(t)] F(ω)=F[f(t)],则有

∫ − ∞ + ∞ [ f ( t ) ] 2 d t = 1 2 π ∫ − ∞ + ∞ ∣ F ( ω ) ∣ 2 d ω (1) \int_{ - \infty }^{ + \infty } [{f}(t)]^2 {\rm{d}}t = \frac{1}{{2\pi }}\int_{ - \infty }^{ + \infty }| {F}(\omega )|^2 {\rm{d}}\omega \tag1 +[f(t)]2dt=2π1+F(ω)2dω(1)
该等式又称为Parseval等式。

二、证明Fourier变换中的能量积分(Parseval 等式)

证明:
根据Fourier变换的乘积定理的推论,令 f 1 ( t ) = f 2 ( t ) = f ( t ) f_1(t)=f_2(t)=f(t) f1(t)=f2(t)=f(t),则
∫ − ∞ + ∞ [ f ( t ) ] 2 d t = ∫ − ∞ + ∞ f ( t ) f ( t ) d t = 1 2 π ∫ − ∞ + ∞ F ( ω ) ‾ F ( ω ) d ω = 1 2 π ∫ − ∞ + ∞ ∣ F ( ω ) ∣ 2 d ω = 1 2 π ∫ − ∞ + ∞ S ( ω ) d ω \int_{ - \infty }^{ + \infty } [{f}(t)]^2 {\rm{d}}t = \int_{ - \infty }^{ + \infty } {{{f}(t)} } {f}(t){\rm{d}}t \\\\= \frac{1}{{2\pi }}\int_{ - \infty }^{ + \infty } {\overline {{F}(\omega )} } {F}(\omega ){\rm{d}}\omega\\\\= \frac{1}{{2\pi }}\int_{ - \infty }^{ + \infty }| {F}(\omega )|^2 {\rm{d}}\omega\\\\= \frac{1}{{2\pi }}\int_{ - \infty }^{ + \infty } {S}(\omega ) {\rm{d}}\omega +[f(t)]2dt=+f(t)f(t)dt=2π1+F(ω)F(ω)dω=2π1+F(ω)2dω=2π1+S(ω)dω
其中, S ( ω ) = ∣ F ( ω ) ∣ 2 {S}(\omega )=|{F}(\omega )|^2 S(ω)=F(ω)2,并将 S ( ω ) {S}(\omega ) S(ω)称为能量密度函数(或称为能量谱密度)。
证毕.
注解:关于Fourier变换的乘积定理及其推论和证明过程(见本博主文章:链接: Fourier变换的乘积定理及其详细证明过程).

能量密度函数 S ( ω ) {S}(\omega ) S(ω)决定了函数 f ( t ) f(t) f(t)的能量在频域的分布规律,将 S ( ω ) {S}(\omega ) S(ω)对所有频率积分就得到 f ( t ) f(t) f(t)在时间域 ( − ∞ , + ∞ ) (-\infty,+\infty) (,+)范围的总能量 ∫ − ∞ + ∞ [ f ( t ) ] 2 d t \int_{ - \infty }^{ + \infty } [{f}(t)]^2 {\rm{d}}t +[f(t)]2dt。因此,Parseval等式又称为能量积分。
此外,还可知能量密度函数 S ( ω ) {S}(\omega ) S(ω)是一个偶函数,即
S ( ω ) = S ( − ω ) {S}(\omega )={S}(-\omega ) S(ω)=S(ω).

三、能量积分(Parseval等式)特别注意事项

  1. ∫ − ∞ + ∞ [ f ( t ) ] 2 d t = 1 2 π ∫ − ∞ + ∞ ∣ F ( ω ) ∣ 2 d ω \int_{ - \infty }^{ + \infty } [{f}(t)]^2 {\rm{d}}t = \frac{1}{{2\pi }}\int_{ - \infty }^{ + \infty }| {F}(\omega )|^2 {\rm{d}}\omega +[f(t)]2dt=2π1+F(ω)2dω等式中, ∣ F ( ω ) ∣ 2 |{F}(\omega )|^2 F(ω)2表示对 F ( ω ) F(\omega) F(ω)取模后再平方,而不能写成 [ F ( ω ) ] 2 [{F}(\omega )]^2 [F(ω)]2,此处要特别留意该差别。
  2. 能量密度函数 S ( ω ) {S}(\omega ) S(ω)是一个偶函数,即 S ( ω ) = S ( − ω ) {S}(\omega )={S}(-\omega ) S(ω)=S(ω),它不等于 f ( t ) f(t) f(t)的傅里叶变换(即能量谱密度和频谱是两种不同的计算过程);而是能量密度函数 S ( ω ) {S}(\omega ) S(ω)等于 f ( t ) f(t) f(t)的傅里叶变换后取模再平方而得到。

相关文章:

Fourier变换中的能量积分及其详细证明过程

Fourier变换中的能量积分及其详细证明过程 在使用Fourier变换分析信号时候,有时需要用到能量积分。本文对Fourier变换的能量积分进行分析。 一、Fourier变换中的能量积分 若 F ( ω ) F [ f ( t ) ] F(\omega)\mathscr F[f(t)] F(ω)F[f(t)],则有 ∫…...

保护 Web 服务器安全性

面向公众的系统(如 Web 服务器)经常成为攻击者的目标,如果这些业务关键资源没有得到适当的保护,可能会导致安全攻击,从而导致巨大的财务后果,并在客户中失去良好的声誉。 什么是网络服务器审核 当有人想要…...

docker数据管理和网络通信

docker数据管理 管理 Docker 容器中数据主要有两种方式: 数据卷(Data Volumes)和数据卷容器(DataVolumes Containers)。 1.数据卷 数据卷是一个供容器使用的特殊目录,位于容器中。可将宿主机…...

代理IP与Socks5代理:网络工程师的神奇魔法棒

网络工程师是数字世界的魔法师,而代理IP和Socks5代理则是他们的神奇魔法棒。这两项技术在跨界电商、爬虫、出海业务、网络安全和游戏等领域中,为网络工程师提供了强大的工具,让他们能够创造技术的奇迹。本文将深入研究这些神奇魔法棒在不同领…...

【K8S系列】深入解析k8s 网络插件—kube-router

序言 做一件事并不难,难的是在于坚持。坚持一下也不难,难的是坚持到底。 文章标记颜色说明: 黄色:重要标题红色:用来标记结论绿色:用来标记论点蓝色:用来标记论点 在现代容器化应用程序的世界中…...

Flutter的Platform介绍-跨平台开发,如何根据不同平台创建不同UI和行为

文章目录 Flutter跨平台概念介绍跨平台开发平台相关性Platform ChannelPlatform-specific UIPlatform Widgets 如何判断当前是什么平台实例 Platform 类介绍获取当前平台的名称检查当前平台其他属性 利用flutter设计跨Android和IOS平台应用的技巧1. 遵循平台的设计准则2. 使用平…...

gitlab docker部署,备份,恢复

本次安装在CentOS7下进行 1、安装yum 检查是否已经安装yum yum --version如果未安装 sudo yum install -y yum-utils添加镜像源: 国外镜像源:yum-config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo阿里镜像源&am…...

腾讯云/阿里云国际站代理:阿里云、华为云和腾讯云“大展拳脚”,与国际巨头未来竞争焦点是AI计算?

国内云计算市场重新掀起的价格战,腾讯云国际站代理让竞争本就内卷的市场陷入白热化,中国云厂商深耕东南亚的意愿变强。2020年之后,上下游企业与中国云厂商抱团出海趋势明显。东软集团、用友网络等A股上市公司也在走向东南亚。 东南亚市场蛋糕…...

基于Java+SpringBoot+Vue企业OA管理系统的设计与实现 前后端分离【Java毕业设计·文档报告·代码讲解·安装调试】

🍊作者:计算机编程-吉哥 🍊简介:专业从事JavaWeb程序开发,微信小程序开发,定制化项目、 源码、代码讲解、文档撰写、ppt制作。做自己喜欢的事,生活就是快乐的。 🍊心愿:点…...

Java架构师系统架构设计性能评估

目录 1 导论2 架构评估基础系统性能衡量的基本指标2.1 系统性能的指标2.2 数据库指标2.3 并发用户数2.4 网络延迟2.4 系统吞吐量2.5 资源性能指标3 架构评估基础服务端性能测试3.1基准测试3.2 负载测试3.3 压力测试3.4 疲劳强度测试3.5 容量测试1 导论 本章的主要内容是掌握架构…...

Android可滑动的分时图以及常用动画

先看一下效果: 自定义View 其中顶部是模仿的股票数据分时图,以前也写过详细的文章传送门,只不过不支持左右滑动,这款是在那个基础上的修改 在说一下分时图的思路吧: 可以看作是一条条相连的直线首尾相接&#xff0c…...

软考系统架构师常考知识点整理(含案例分析、论文历年题目总结)

系统架构师常考知识点总结 计算机组成原理 1、同步/异步区分 CPU访问内存通常是同步方式 CPU与I/O接口交换信息通常是同步方式 CPU与PCI总线交换信息通常是同步方式 I/O接口与打印机交换信息则通常采用基于缓存池的异步方式, 2、双工通信方式 对端到端通信总线的信号传…...

Netty通信在中间件组件中的广泛使用-Dubbo3举例

Netty是一个高性能异步IO通信框架,封装了NIO,对各种bug做了很好的优化解决。所以很多中间件底层的通信都会使用Netty,比如说:Dubbo3,rocketmq,ElasticSearch等。 比方说,我们使用dubbo作为rpc跨…...

基于Java的在线拍卖系统设计与实现(源码+lw+部署文档+讲解等)

文章目录 前言具体实现截图论文参考详细视频演示代码参考源码获取 前言 💗博主介绍:✌全网粉丝10W,CSDN特邀作者、博客专家、CSDN新星计划导师、全栈领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java、小程序技…...

Maven Pom

目录 Pom 父(Super)POM POM 标签大全详解 POM( Project Object Model,项目对象模型 ) 是 Maven 工程的基本工作单元,是一个XML文件,包含了项目的基本信息,用于描述项目如何构建,声明项目依赖…...

【运维日常】mongodb 集群生产实践

本站以分享各种运维经验和运维所需要的技能为主 《python零基础入门》:python零基础入门学习 《python运维脚本》: python运维脚本实践 《shell》:shell学习 《terraform》持续更新中:terraform_Aws学习零基础入门到最佳实战 《k8…...

【MATLAB源码-第45期】基于matlab的16APSK调制解调仿真,使用卷积编码软判决。

操作环境: MATLAB 2022a 1、算法描述 1. 16APSK调制解调 16APSK (16-ary Amplitude Phase Shift Keying) 是一种相位调制技术,其基本思想是在恒定幅度的条件下,改变信号的相位,从而传送信息。 - 调制:在16APSK中&am…...

HarmonyOS学习路之方舟开发框架—学习ArkTS语言(状态管理 八)

其他状态管理概述 除了前面章节提到的组件状态管理和应用状态管理,ArkTS还提供了Watch和$$来为开发者提供更多功能: Watch用于监听状态变量的变化。$$运算符:给内置组件提供TS变量的引用,使得TS变量和内置组件的内部状态保持同步…...

SQL按照id集合顺序返回

SQL按照id集合顺序返回 一、需求二、SQL三、MyBatis编写四、FIELD函数五、环境 一、需求 sql这样的 SELECT id, name FROM is_parent_viewshop WHERE id IN (2350, 2396, 3768, 3718, 3692) 按照id顺序返回,sql如何写 二、SQL SELECT id, name FROM is_parent_vi…...

04训练——基于YOLO V8的自定义数据集训练——在windows环境下使用pycharm做训练-1总体步骤

在上文中,笔者介绍了使用google公司提供的免费GPU资源colab来对大量的自定义数据集进行模型训练。该方法虽然简单好用,但是存在以下几方面的短板问题: 一是需要通过虚拟服务器做为跳板机来访问,总体操作起来非常繁杂。 二是需要将大量的数据上传缓慢,管理和使用非常不友…...

基于ASP.NET+ SQL Server实现(Web)医院信息管理系统

医院信息管理系统 1. 课程设计内容 在 visual studio 2017 平台上,开发一个“医院信息管理系统”Web 程序。 2. 课程设计目的 综合运用 c#.net 知识,在 vs 2017 平台上,进行 ASP.NET 应用程序和简易网站的开发;初步熟悉开发一…...

MODBUS TCP转CANopen 技术赋能高效协同作业

在现代工业自动化领域,MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步,这两种通讯协议也正在被逐步融合,形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...

【服务器压力测试】本地PC电脑作为服务器运行时出现卡顿和资源紧张(Windows/Linux)

要让本地PC电脑作为服务器运行时出现卡顿和资源紧张的情况,可以通过以下几种方式模拟或触发: 1. 增加CPU负载 运行大量计算密集型任务,例如: 使用多线程循环执行复杂计算(如数学运算、加密解密等)。运行图…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

代理篇12|深入理解 Vite中的Proxy接口代理配置

在前端开发中,常常会遇到 跨域请求接口 的情况。为了解决这个问题,Vite 和 Webpack 都提供了 proxy 代理功能,用于将本地开发请求转发到后端服务器。 什么是代理(proxy)? 代理是在开发过程中,前端项目通过开发服务器,将指定的请求“转发”到真实的后端服务器,从而绕…...

Java数值运算常见陷阱与规避方法

整数除法中的舍入问题 问题现象 当开发者预期进行浮点除法却误用整数除法时,会出现小数部分被截断的情况。典型错误模式如下: void process(int value) {double half = value / 2; // 整数除法导致截断// 使用half变量 }此时...

c++第七天 继承与派生2

这一篇文章主要内容是 派生类构造函数与析构函数 在派生类中重写基类成员 以及多继承 第一部分:派生类构造函数与析构函数 当创建一个派生类对象时,基类成员是如何初始化的? 1.当派生类对象创建的时候,基类成员的初始化顺序 …...

给网站添加live2d看板娘

给网站添加live2d看板娘 参考文献: stevenjoezhang/live2d-widget: 把萌萌哒的看板娘抱回家 (ノ≧∇≦)ノ | Live2D widget for web platformEikanya/Live2d-model: Live2d model collectionzenghongtu/live2d-model-assets 前言 网站环境如下,文章也主…...

Chrome 浏览器前端与客户端双向通信实战

Chrome 前端(即页面 JS / Web UI)与客户端(C 后端)的交互机制,是 Chromium 架构中非常核心的一环。下面我将按常见场景,从通道、流程、技术栈几个角度做一套完整的分析,特别适合你这种在分析和改…...

ZYNQ学习记录FPGA(一)ZYNQ简介

一、知识准备 1.一些术语,缩写和概念: 1)ZYNQ全称:ZYNQ7000 All Pgrammable SoC 2)SoC:system on chips(片上系统),对比集成电路的SoB(system on board) 3)ARM:处理器…...