【深度学习实验】卷积神经网络(八):使用深度残差神经网络ResNet完成图片多分类任务
目录
一、实验介绍
二、实验环境
1. 配置虚拟环境
2. 库版本介绍
三、实验内容
0. 导入必要的工具包
1. 构建数据集(CIFAR10Dataset)
a. read_csv_labels()
b. CIFAR10Dataset
2. 构建模型(FeedForward)
3.整合训练、评估、预测过程(Runner)
4. __main__
5. 代码整合
一、实验介绍
本实验实现了实现深度残差神经网络ResNet,并基于此完成图像分类任务。
残差网络(ResNet)是一种深度神经网络架构,用于解决深层网络训练过程中的梯度消失和梯度爆炸问题。通过引入残差连接(residual connection)来构建网络层与层之间的跳跃连接,使得网络可以更好地优化深层结构。
残差网络的一个重要应用是在图像识别任务中,特别是在深度卷积神经网络(CNN)中。通过使用残差模块,可以构建非常深的网络,例如ResNet,其在ILSVRC 2015图像分类挑战赛中取得了非常出色的成绩。
在ResNet中,每个残差块由一个或多个卷积层组成,其中包含了跳跃连接。跳跃连接将输入直接添加到残差块的输出中,从而使得网络可以学习残差函数,即残差块只需学习将输入的变化部分映射到输出,而不需要学习完整的映射关系。这种设计有助于减轻梯度消失问题,使得网络可以更深地进行训练。
二、实验环境
本系列实验使用了PyTorch深度学习框架,相关操作如下:
1. 配置虚拟环境
conda create -n DL python=3.7
conda activate DL
pip install torch==1.8.1+cu102 torchvision==0.9.1+cu102 torchaudio==0.8.1 -f https://download.pytorch.org/whl/torch_stable.html
conda install matplotlib
conda install scikit-learn
2. 库版本介绍
软件包 | 本实验版本 | 目前最新版 |
matplotlib | 3.5.3 | 3.8.0 |
numpy | 1.21.6 | 1.26.0 |
python | 3.7.16 | |
scikit-learn | 0.22.1 | 1.3.0 |
torch | 1.8.1+cu102 | 2.0.1 |
torchaudio | 0.8.1 | 2.0.2 |
torchvision | 0.9.1+cu102 | 0.15.2 |
三、实验内容
0. 导入必要的工具包
import torch
from torch import nn
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from torchvision.io import read_image
1. 构建数据集(CIFAR10Dataset)
CIFAR10数据集共有60000个样本,每个样本都是一张32*32像素的RGB图像(彩色图像),每个RGB图像又必定分为3个通道(R通道、G通道、B通道)。CIFAR10中有10类物体,标签值分别按照0~9来区分,他们分别是飞机( airplane )、汽车( automobile )、鸟( bird )、猫( cat )、鹿( deer )、狗( dog )、青蛙( frog )、马( horse )、船( ship )和卡车( truck )。为减小运行时间,本实验选取其中1000张作为训练集。
数据集链接:
CIFAR-10 and CIFAR-100 datasets (toronto.edu)http://www.cs.toronto.edu/~kriz/cifar.html
a. read_csv_labels()
从CSV文件中读取标签信息并返回一个标签字典。
def read_csv_labels(fname):"""读取fname来给标签字典返回一个文件名"""with open(fname, 'r') as f:# 跳过文件头行(列名)lines = f.readlines()[1:]tokens = [l.rstrip().split(',') for l in lines]return dict(((name, label) for name, label in tokens))
-
使用
open
函数打开指定文件名的CSV文件,并将文件对象赋值给变量f
。这里使用'r'
参数以只读模式打开文件。 -
使用文件对象的
readlines()
方法读取文件的所有行,并将结果存储在名为lines
的列表中。通过切片操作[1:]
,跳过了文件的第一行(列名),将剩余的行存储在lines
列表中。 -
列表推导式(list comprehension):对
lines
列表中的每一行进行处理。对于每一行,使用rstrip()
方法去除行末尾的换行符,并使用split(',')
方法将行按逗号分割为多个标记。最终,将所有行的标记组成的子列表存储在tokens
列表中。 -
使用字典推导式(dictionary comprehension)将
tokens
列表中的子列表转换为字典。对于tokens
中的每个子列表,将子列表的第一个元素作为键(name),第二个元素作为值(label),最终返回一个包含这些键值对的字典。
b. CIFAR10Dataset
class CIFAR10Dataset(Dataset):def __init__(self, folder_path, fname):self.labels = read_csv_labels(os.path.join(folder_path, fname))self.folder_path = os.path.join(folder_path, 'train')def __len__(self):return len(self.labels)def __getitem__(self, idx):img = read_image(self.folder_path + '/' + str(idx + 1) + '.png')label = self.labels[str(idx + 1)]return img, torch.tensor(int(label))
-
构造函数:
-
接受两个参数
-
folder_path
表示数据集所在的文件夹路径 -
fname
表示包含标签信息的文件名。
-
-
调用
read_csv_labels
函数,传递folder_path
和fname
作为参数,以读取CSV文件中的标签信息,并将返回的标签字典存储在self.labels
变量中。 -
通过拼接
folder_path
和字符串'train'
来构建数据集的文件夹路径,将结果存储在self.folder_path
变量中。
-
-
def __len__(self)
-
这是
CIFAR10Dataset
类的方法,用于返回数据集的长度,即样本的数量。
-
-
def __getitem__(self, idx)
: 这是CIFAR10Dataset
类的方法,用于根据给定的索引idx
获取数据集中的一个样本。它首先根据索引idx
构建图像文件的路径,并调用read_image
函数来读取图像数据,将结果存储在img
变量中。然后,它通过将索引转换为字符串,并使用该字符串作为键来从self.labels
字典中获取相应的标签,将结果存储在label
变量中。最后,它返回一个元组,包含图像数据和经过torch.tensor
转换的标签。
2. 构建模型(FeedForward)
参考前文:
【深度学习实验】卷积神经网络(七):实现深度残差神经网络ResNet-CSDN博客https://blog.csdn.net/m0_63834988/article/details/133705834
3.整合训练、评估、预测过程(Runner)
参考前文:
【深度学习实验】前馈神经网络(九):整合训练、评估、预测过程(Runner)_QomolangmaH的博客-CSDN博客https://blog.csdn.net/m0_63834988/article/details/133219448?spm=1001.2014.3001.5501
4. __main__
if __name__ == '__main__':batch_size = 20# 构建训练集train_data = CIFAR10Dataset('cifar10_tiny', 'trainLabels.csv')train_iter = DataLoader(train_data, batch_size=batch_size)# 构建测试集test_data = CIFAR10Dataset('cifar10_tiny', 'trainLabels.csv')test_iter = DataLoader(test_data, batch_size=batch_size)# 模型训练num_classes = 10# 定义模型model = ResNet(num_classes)# 定义损失函数loss_fn = F.cross_entropy# 定义优化器optimizer = torch.optim.SGD(model.parameters(), lr=0.1)runner = Runner(model, optimizer, loss_fn, metric=None)runner.train(train_iter, num_epochs=10, save_path='chapter_5')# 模型预测runner.load_model('chapter_5.pth')x, label = next(iter(test_iter))predict = torch.argmax(runner.predict(x.float()), dim=1)print('predict:', predict)print(' label:', label)
5. 代码整合
# 导入必要的工具包
import torch
from torch import nn
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from torchvision.io import read_image# 残差连接, 输入和输出的维度有时是相同的, 有时是不同的, 所以需要 use_1x1conv来判断是否需要
class Residual(nn.Module):def __init__(self, input_channels, num_channels, use_1x1conv=False, strides=1):super().__init__()self.conv1 = nn.Conv2d(input_channels, num_channels, kernel_size=3, padding=1, stride=strides)self.conv2 = nn.Conv2d(num_channels, num_channels, kernel_size=3, padding=1)if use_1x1conv:self.conv3 = nn.Conv2d(input_channels, num_channels, kernel_size=1, stride=strides)else:self.conv3 = None# 批量归一化层,将会在第7章讲到self.bn1 = nn.BatchNorm2d(num_channels)self.bn2 = nn.BatchNorm2d(num_channels)def forward(self, X):Y = F.relu(self.bn1(self.conv1(X)))Y = self.bn2(self.conv2(Y))if self.conv3:X = self.conv3(X)Y += Xreturn F.relu(Y)# 残差网络是由几个不同的残差块组成的
def resnet_block(input_channels, num_channels, num_residuals, first_block=False):blk = []for i in range(num_residuals):if i == 0 and not first_block:blk.append(Residual(input_channels, num_channels,use_1x1conv=True, strides=2))else:blk.append(Residual(num_channels, num_channels))return blkclass ResNet(nn.Module):def __init__(self, num_classes):super().__init__()self.b1 = nn.Sequential(nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3),nn.BatchNorm2d(64), nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2, padding=1))self.b2 = nn.Sequential(*resnet_block(64, 64, 2, first_block=True))self.b3 = nn.Sequential(*resnet_block(64, 128, 2))self.b4 = nn.Sequential(*resnet_block(128, 256, 2))self.b5 = nn.Sequential(*resnet_block(256, 512, 2))self.head = nn.Sequential(nn.AdaptiveAvgPool2d((1, 1)), nn.Flatten(), nn.Linear(512, num_classes))def forward(self, x):net = nn.Sequential(self.b1, self.b2, self.b3, self.b4, self.b5, self.head)return net(x)import osdef read_csv_labels(fname):"""读取fname来给标签字典返回一个文件名"""with open(fname, 'r') as f:# 跳过文件头行(列名)lines = f.readlines()[1:]tokens = [l.rstrip().split(',') for l in lines]return dict(((name, label) for name, label in tokens))class CIFAR10Dataset(Dataset):def __init__(self, folder_path, fname):self.labels = read_csv_labels(os.path.join(folder_path, fname))self.folder_path = os.path.join(folder_path, 'train')def __len__(self):return len(self.labels)def __getitem__(self, idx):img = read_image(self.folder_path + '/' + str(idx + 1) + '.png')label = self.labels[str(idx + 1)]return img, torch.tensor(int(label))class Runner(object):def __init__(self, model, optimizer, loss_fn, metric=None):self.model = modelself.optimizer = optimizerself.loss_fn = loss_fn# 用于计算评价指标self.metric = metric# 记录训练过程中的评价指标变化self.dev_scores = []# 记录训练过程中的损失变化self.train_epoch_losses = []self.dev_losses = []# 记录全局最优评价指标self.best_score = 0# 模型训练阶段def train(self, train_loader, dev_loader=None, **kwargs):# 将模型设置为训练模式,此时模型的参数会被更新self.model.train()num_epochs = kwargs.get('num_epochs', 0)log_steps = kwargs.get('log_steps', 100)save_path = kwargs.get('save_path', 'best_model.pth')eval_steps = kwargs.get('eval_steps', 0)# 运行的step数,不等于epoch数global_step = 0if eval_steps:if dev_loader is None:raise RuntimeError('Error: dev_loader can not be None!')if self.metric is None:raise RuntimeError('Error: Metric can not be None')# 遍历训练的轮数for epoch in range(num_epochs):total_loss = 0# 遍历数据集for step, data in enumerate(train_loader):x, y = datalogits = self.model(x.float())loss = self.loss_fn(logits, y.long())total_loss += lossif step % log_steps == 0:print(f'loss:{loss.item():.5f}')loss.backward()self.optimizer.step()self.optimizer.zero_grad()# 每隔一定轮次进行一次验证,由eval_steps参数控制,可以采用不同的验证判断条件if eval_steps != 0:if (epoch + 1) % eval_steps == 0:dev_score, dev_loss = self.evaluate(dev_loader, global_step=global_step)print(f'[Evalute] dev score:{dev_score:.5f}, dev loss:{dev_loss:.5f}')if dev_score > self.best_score:self.save_model(f'model_{epoch + 1}.pth')print(f'[Evaluate]best accuracy performance has been updated: {self.best_score:.5f}-->{dev_score:.5f}')self.best_score = dev_score# 验证过程结束后,请记住将模型调回训练模式self.model.train()global_step += 1# 保存当前轮次训练损失的累计值train_loss = (total_loss / len(train_loader)).item()self.train_epoch_losses.append((global_step, train_loss))self.save_model(f'{save_path}.pth')print('[Train] Train done')# 模型评价阶段def evaluate(self, dev_loader, **kwargs):assert self.metric is not None# 将模型设置为验证模式,此模式下,模型的参数不会更新self.model.eval()global_step = kwargs.get('global_step', -1)total_loss = 0self.metric.reset()for batch_id, data in enumerate(dev_loader):x, y = datalogits = self.model(x.float())loss = self.loss_fn(logits, y.long()).item()total_loss += lossself.metric.update(logits, y)dev_loss = (total_loss / len(dev_loader))self.dev_losses.append((global_step, dev_loss))dev_score = self.metric.accumulate()self.dev_scores.append(dev_score)return dev_score, dev_loss# 模型预测阶段,def predict(self, x, **kwargs):self.model.eval()logits = self.model(x)return logits# 保存模型的参数def save_model(self, save_path):torch.save(self.model.state_dict(), save_path)# 读取模型的参数def load_model(self, model_path):self.model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))if __name__ == '__main__':batch_size = 20# 构建训练集train_data = CIFAR10Dataset('cifar10_tiny', 'trainLabels.csv')train_iter = DataLoader(train_data, batch_size=batch_size)# 构建测试集test_data = CIFAR10Dataset('cifar10_tiny', 'trainLabels.csv')test_iter = DataLoader(test_data, batch_size=batch_size)# 模型训练num_classes = 10# 定义模型model = ResNet(num_classes)# 定义损失函数loss_fn = F.cross_entropy# 定义优化器optimizer = torch.optim.SGD(model.parameters(), lr=0.1)runner = Runner(model, optimizer, loss_fn, metric=None)runner.train(train_iter, num_epochs=15, save_path='chapter_5')# 模型预测runner.load_model('chapter_5.pth')x, label = next(iter(test_iter))predict = torch.argmax(runner.predict(x.float()), dim=1)print('predict:', predict)print(' label:', label)
相关文章:

【深度学习实验】卷积神经网络(八):使用深度残差神经网络ResNet完成图片多分类任务
目录 一、实验介绍 二、实验环境 1. 配置虚拟环境 2. 库版本介绍 三、实验内容 0. 导入必要的工具包 1. 构建数据集(CIFAR10Dataset) a. read_csv_labels() b. CIFAR10Dataset 2. 构建模型(FeedForward&#x…...

HarmonyOS学习 -- ArkTS开发语言入门
文章目录 一、编程语言介绍二、TypeScript基础类型1. 布尔值2. 数字3. 字符串4. 数组5. 元组6. 枚举7. unknown8. void9. null 和 undefined10. 联合类型 三、TypeScript基础知识条件语句if语句switch语句 函数定义有名函数和匿名函数可选参数剩余参数箭头函数 类1. 类的定义2.…...

早安心语|不委屈不将就,让生活充满仪式感
1、让自己的生活多一种可能,给自己的未来多一份惊喜,人生所有的机会和惊喜,都是在你全力以赴的道路上遇到的。 2、推开自己喜欢的人叫成长,留住自己喜欢的人叫本事,总有人嫌你不够好,也有人觉得你哪都好&am…...
[Python进阶] 操纵键盘:pyuserinput
6.3 操纵键盘:pyuserinput 6.3.1 说明 在安装pyuserinput库时会自动安装PyMouse和PyKeyboard库。前者主要用来操作鼠标,包括鼠标的点击、移动等。后者主要用来操作键盘,包括键盘按键的按下、弹起等。这两个库还可以同时对鼠标和键盘的事件进…...

解析Moonbeam的安全性、互操作性和市场竞争力
Moonbeam依托Polkadot Substrate框架构建,用Rust程序设计语言创建的智能合约区块链平台,在继承Polkadot安全性的基础上为项目提供以太坊虚拟机(EVM)的兼容性和原生的跨链互操作性优势。Moonbeam的EVM兼容性表示开发者无需学习Subs…...
RPA是什么?怎么成为RPA高手?
RPA(Robotic Process Automation,机器人流程自动化)是一种技术,通过软件机器人模拟人类在计算机上执行重复性任务,从而提高生产力、减少错误并降低成本。RPA 可以广泛应用于金融、医疗、制造、零售等多个行业ÿ…...

Apache Shiro 漏洞复现
文章目录 Apache Shiro 漏洞复现1. Apache Shiro 1.2.4 反序列化漏洞1.1 漏洞描述1.2 漏洞原理1.3 漏洞复现1.3.1 环境启动 1.4 漏洞利用1.5 修复方案 Apache Shiro 漏洞复现 链接地址:Vulhub - Docker-Compose file for vulnerability environment 1. Apache Shi…...

炒现货白银的最佳时间
天时地利人和是我们进行现货白银投资最关键的因素。天时是指我们因时而动,在适合的时机出击。地利,就是我们对市场的定位,对自己入场的定位有清晰的了解,并且这些位置对我们有利。人和就是指投资者的状态很好,对如何进…...

C# OpenVINO 人脸识别
效果 耗时 Preprocess: 1.41ms Infer: 4.38ms Postprocess: 0.03ms Total: 5.82ms 项目 代码 using OpenCvSharp; using Sdcb.OpenVINO; using System; using System.Collections.Generic; using System.Diagnostics; using System.Drawing; using System.Text; using Syste…...

ESP32-WROOM-32无法进入下载模式进行程序上传的问题
结论 先说结论,ESP32-WROOM-32无法进入下载模式通过串口进行程序上传,可能是GPIO2引脚没有通过下拉电阻拉低,导致无法进入正确的启动模式。 启动模式 ESP32启动时会打印rst:0x1 (POWERON_RESET),boot:0x13 (SPI_FAST_FLASH_BOOT) 复位源rs…...

尚硅谷Flink(一)
目录 ☄️前置工作 fenfa脚本 🌋概述 ☄️Flink是什么 ☄️特点(多nb) ☄️应用场景(不用看) ☄️分层API 🌋配环境 ☄️wordcount ☄️WcDemoUnboundStreaming 🌋集群部署 ☄️集…...
C++ 设计模式 —— 桥接模式
C 设计模式 —— 桥接模式 0. 引用连接 本文主要的思路和代码,来自于对以下连接的学习和实现: 桥接模式 1. 引言 1.1 什么是桥接模式? 桥接模式的定义桥接模式的作用 桥接模式,顾名思义,就像是一座连接两岸的桥…...

微信怎么删除好友?非常简单,2个方法!
随着生活和工作的节奏加快,这也导致我们微信里的联系人变得越来越多。有时候,我们可能只是需要给对方转钱、发送照片或者是一些其他理由。 而这部分“好友”可能除了这次交流后再也没有别的联系了,那么这时候大家可能会想把他们删除。那么微…...

小谈设计模式(25)—职责链模式
小谈设计模式(25)—职责链模式 专栏介绍专栏地址专栏介绍 职责链模式分析角色分析抽象处理者(Handler)具体处理者(ConcreteHandler)客户端(Client) 优缺点分析优点123 缺点12 应用场…...
Python- JSON-RPC创建一个远程过程调用
我们使用JSON-RPC创建一个远程过程调用的例子,我们将使用jsonrpcserver库和Flask框架创建一个后端服务,并使用jsonrpcclient作为客户端。这个例子将包括: 一个计算服务,提供加、减、乘、除四个方法。错误处理:除数为零…...
Linux中scp命令复制文件
scp命令是在Linux中用于在本地主机和远程主机之间进行安全传输文件的命令。下面是使用scp命令的语法: scp [参数] [来源路径] [目标路径]参数: -r:递归复制整个目录。-P:指定远程主机的端口。-p:保留原文件的修改时间…...
Interlay采用Moonbeam路由流动性,为波卡发展更多流动性
波卡上的首选多链开发平台Moonbeam宣布Interlay现在支持由Carrier赋能的Moonbeam路由流动性。Carrier是一个功能强大的token和NFT跨链桥,支持超过12个网络。Interlay是波卡上的一条平行链,与HydraDX一起通过Wormhole、Moonbeam和Carrier为波卡生态挖掘流…...

Jetson Orin NX 开发指南(9): Pixhawk 6X 飞控固件的烧写与 QGroundControl 参数配置
一、前言 由于 Jetson Orin NX 常被用作自主无人机机载电脑,其往往需要与烧写了 PX4 固件的飞控进行通信,飞控的烧写与配置往往会遇到很多问题,因此本文将介绍时下最款的 Pixhawk 系列飞控 Pixhawk 6X,做一个固件烧写和参数配置的…...

Redis(四)多级缓存
文章目录 一、传统缓存存在的问题二、多级缓存方案三、JVM进程缓存案例演示: 四、Lua语法入门Lua语言入门 五、多级缓存(一)安装OpenResty(二)OpenResty入门(三)请求参数处理(四&…...
网站安全防护
1.确保环境安全例如近期LNMP投毒事件 2.nginx/php隐藏版本号/关闭报错显示行 3.限制3306端口/phpMyAdmin尽量不用 4.修改指纹例如X-Powered-By/Cookie 5.上线前后进行主机漏扫网站漏扫 6.系统安装杀毒ClamAV 7.更改后台管理入口 8.安装雷池WAF防护 9.网站使用https协议 10.后台…...
Leetcode 3576. Transform Array to All Equal Elements
Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接:3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到…...

【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)
服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...

C# 类和继承(抽象类)
抽象类 抽象类是指设计为被继承的类。抽象类只能被用作其他类的基类。 不能创建抽象类的实例。抽象类使用abstract修饰符声明。 抽象类可以包含抽象成员或普通的非抽象成员。抽象类的成员可以是抽象成员和普通带 实现的成员的任意组合。抽象类自己可以派生自另一个抽象类。例…...
爬虫基础学习day2
# 爬虫设计领域 工商:企查查、天眼查短视频:抖音、快手、西瓜 ---> 飞瓜电商:京东、淘宝、聚美优品、亚马逊 ---> 分析店铺经营决策标题、排名航空:抓取所有航空公司价格 ---> 去哪儿自媒体:采集自媒体数据进…...

优选算法第十二讲:队列 + 宽搜 优先级队列
优选算法第十二讲:队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...

智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制
在数字化浪潮席卷全球的今天,数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具,在大规模数据获取中发挥着关键作用。然而,传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时,常出现数据质…...
大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计
随着大语言模型(LLM)参数规模的增长,推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长,而KV缓存的内存消耗可能高达数十GB(例如Llama2-7B处理100K token时需50GB内存&a…...
【Java学习笔记】BigInteger 和 BigDecimal 类
BigInteger 和 BigDecimal 类 二者共有的常见方法 方法功能add加subtract减multiply乘divide除 注意点:传参类型必须是类对象 一、BigInteger 1. 作用:适合保存比较大的整型数 2. 使用说明 创建BigInteger对象 传入字符串 3. 代码示例 import j…...

通过MicroSip配置自己的freeswitch服务器进行调试记录
之前用docker安装的freeswitch的,启动是正常的, 但用下面的Microsip连接不上 主要原因有可能一下几个 1、通过下面命令可以看 [rootlocalhost default]# docker exec -it freeswitch fs_cli -x "sofia status profile internal"Name …...
全面解析数据库:从基础概念到前沿应用
在数字化时代,数据已成为企业和社会发展的核心资产,而数据库作为存储、管理和处理数据的关键工具,在各个领域发挥着举足轻重的作用。从电商平台的商品信息管理,到社交网络的用户数据存储,再到金融行业的交易记录处理&a…...