竞赛选题 深度学习+opencv+python实现车道线检测 - 自动驾驶
文章目录
- 0 前言
- 1 课题背景
- 2 实现效果
- 3 卷积神经网络
- 3.1卷积层
- 3.2 池化层
- 3.3 激活函数:
- 3.4 全连接层
- 3.5 使用tensorflow中keras模块实现卷积神经网络
- 4 YOLOV5
- 6 数据集处理
- 7 模型训练
- 8 最后
0 前言
🔥 优质竞赛项目系列,今天要分享的是
🚩 **基于深度学习的自动驾驶车道线检测算法研究与实现 **
该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!
🥇学长这里给一个题目综合评分(每项满分5分)
- 难度系数:3分
- 工作量:4分
- 创新点:4分
🧿 更多资料, 项目分享:
https://gitee.com/dancheng-senior/postgraduate
1 课题背景
从汽车的诞生到现在为止已经有一百多年的历史了,随着车辆的增多,交通事故频繁发生,成为社会发展的隐患,人们的生命安全受到了严重威胁。多起事故发生原因中,都有一个共同点,那就是因为视觉问题使驾驶员在行车时获取不准确的信息导致交通事故的发生。为了解决这个问题,高级驾驶辅助系统(ADAS)应运而生,其中车道线检测就是ADAS中相当重要的一个环节。利用机器视觉来检测车道线相当于给汽车安装上了一双“眼睛”,从而代替人眼来获取车道线信息,在一定程度上可以减少发生交通事故的概率。
本项目基于yolov5实现图像车道线检测。
2 实现效果

3 卷积神经网络
受到人类大脑神经突触结构相互连接的模式启发,神经网络作为人工智能领域的重要组成部分,通过分布式的方法处理信息,可以解决复杂的非线性问题,从构造方面来看,主要包括输入层、隐藏层、输出层三大组成结构。每一个节点被称为一个神经元,存在着对应的权重参数,部分神经元存在偏置,当输入数据x进入后,对于经过的神经元都会进行类似于:y=w*x+b的线性函数的计算,其中w为该位置神经元的权值,b则为偏置函数。通过每一层神经元的逻辑运算,将结果输入至最后一层的激活函数,最后得到输出output。

3.1卷积层
卷积核相当于一个滑动窗口,示意图中3x3大小的卷积核依次划过6x6大小的输入数据中的对应区域,并与卷积核滑过区域做矩阵点乘,将所得结果依次填入对应位置即可得到右侧4x4尺寸的卷积特征图,例如划到右上角3x3所圈区域时,将进行0x0+1x1+2x1+1x1+0x0+1x1+1x0+2x0x1x1=6的计算操作,并将得到的数值填充到卷积特征的右上角。

3.2 池化层
池化操作又称为降采样,提取网络主要特征可以在达到空间不变性的效果同时,有效地减少网络参数,因而简化网络计算复杂度,防止过拟合现象的出现。在实际操作中经常使用最大池化或平均池化两种方式,如下图所示。虽然池化操作可以有效的降低参数数量,但过度池化也会导致一些图片细节的丢失,因此在搭建网络时要根据实际情况来调整池化操作。

3.3 激活函数:
激活函数大致分为两种,在卷积神经网络的发展前期,使用较为传统的饱和激活函数,主要包括sigmoid函数、tanh函数等;随着神经网络的发展,研宄者们发现了饱和激活函数的弱点,并针对其存在的潜在问题,研宄了非饱和激活函数,其主要含有ReLU函数及其函数变体
3.4 全连接层
在整个网络结构中起到“分类器”的作用,经过前面卷积层、池化层、激活函数层之后,网络己经对输入图片的原始数据进行特征提取,并将其映射到隐藏特征空间,全连接层将负责将学习到的特征从隐藏特征空间映射到样本标记空间,一般包括提取到的特征在图片上的位置信息以及特征所属类别概率等。将隐藏特征空间的信息具象化,也是图像处理当中的重要一环。
3.5 使用tensorflow中keras模块实现卷积神经网络
class CNN(tf.keras.Model):def __init__(self):super().__init__()self.conv1 = tf.keras.layers.Conv2D(filters=32, # 卷积层神经元(卷积核)数目kernel_size=[5, 5], # 感受野大小padding='same', # padding策略(vaild 或 same)activation=tf.nn.relu # 激活函数)self.pool1 = tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2)self.conv2 = tf.keras.layers.Conv2D(filters=64,kernel_size=[5, 5],padding='same',activation=tf.nn.relu)self.pool2 = tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2)self.flatten = tf.keras.layers.Reshape(target_shape=(7 * 7 * 64,))self.dense1 = tf.keras.layers.Dense(units=1024, activation=tf.nn.relu)self.dense2 = tf.keras.layers.Dense(units=10)def call(self, inputs):x = self.conv1(inputs) # [batch_size, 28, 28, 32]x = self.pool1(x) # [batch_size, 14, 14, 32]x = self.conv2(x) # [batch_size, 14, 14, 64]x = self.pool2(x) # [batch_size, 7, 7, 64]x = self.flatten(x) # [batch_size, 7 * 7 * 64]x = self.dense1(x) # [batch_size, 1024]x = self.dense2(x) # [batch_size, 10]output = tf.nn.softmax(x)return output
4 YOLOV5
简介
基于卷积神经网络(convolutional neural network, CNN)的目标检测模型研究可按检测阶段分为两类,一 类 是 基 于 候 选 框
的 两 阶 段 检 测 , R-CNN 、 Fast R-CNN、Faster R-CNN、Mask R-CNN都是基于
目标候选框的两阶段检测方法;另一类是基于免候选框的单阶段检测,SSD、YOLO系列都是典型的基于回归思想的单阶段检测方法。
YOLOv5 目标检测模型 2020年由Ultralytics发布的YOLOv5在网络轻量化 上贡献明显,检测速度更快也更加易于部署。与之前
版本不同,YOLOv5 实现了网络架构的系列化,分别 是YOLOv5n、YOLOv5s、YOLOv5m、YOLOv5l、
YOLOv5x。这5种模型的结构相似,通过改变宽度倍 数(Depth multiple)来改变卷积过程中卷积核的数量, 通 过 改 变 深 度 倍 数
(Width multiple) 来 改 变 BottleneckC3(带3个CBS模块的BottleneckCSP结构)中
C3的数量,从而实现不同网络深度和不同网络宽度之 间的组合,达到精度与效率的平衡。YOLOv5各版本性能如图所示:

模型结构图如下:

YOLOv5s 模型算法流程和原理
YOLOv5s模型主要算法工作流程原理:
(1) 原始图像输入部分加入了图像填充、自适应 锚框计算、Mosaic数据增强来对数据进行处理增加了 检测的辨识度和准确度。
(2) 主干网络中采用Focus结构和CSP1_X (X个残差结构) 结构进行特征提取。在特征生成部分, 使用基于SPP优化后的SPPF结构来完成。
(3) 颈部层应用路径聚合网络和CSP2_X进行特征融合。
(4) 使用GIOU_Loss作为损失函数。
关键代码:
6 数据集处理
获取摔倒数据集准备训练,如果没有准备好的数据集,可自己标注,但过程会相对繁琐
深度学习图像标注软件众多,按照不同分类标准有多中类型,本文使用LabelImg单机标注软件进行标注。LabelImg是基于角点的标注方式产生边界框,对图片进行标注得到xml格式的标注文件,由于边界框对检测精度的影响较大因此采用手动标注,并没有使用自动标注软件。
考虑到有的朋友时间不足,博主提供了标注好的数据集和训练好的模型,需要请联系。
数据标注简介
通过pip指令即可安装
pip install labelimg
在命令行中输入labelimg即可打开

打开你所需要进行标注的文件夹,点击红色框区域进行标注格式切换,我们需要yolo格式,因此切换到yolo
点击Create RectBo -> 拖拽鼠标框选目标 -> 给上标签 -> 点击ok
数据保存
点击save,保存txt。

7 模型训练
配置超参数
主要是配置data文件夹下的yaml中的数据集位置和种类:

配置模型
这里主要是配置models目录下的模型yaml文件,主要是进去后修改nc这个参数来进行类别的修改。

目前支持的模型种类如下所示:

训练过程

8 最后
🧿 更多资料, 项目分享:
https://gitee.com/dancheng-senior/postgraduate
相关文章:
竞赛选题 深度学习+opencv+python实现车道线检测 - 自动驾驶
文章目录 0 前言1 课题背景2 实现效果3 卷积神经网络3.1卷积层3.2 池化层3.3 激活函数:3.4 全连接层3.5 使用tensorflow中keras模块实现卷积神经网络 4 YOLOV56 数据集处理7 模型训练8 最后 0 前言 🔥 优质竞赛项目系列,今天要分享的是 &am…...
MR混合现实模拟消防安全演练场景实训
混合现实(MR)是一种将虚拟世界与真实世界相结合的技术。它允许教师将数字元素融入实际场景,使学生在亲身体验中学习消防安全知识。这种方式不仅可以激发学生的学习兴趣,还能增强学生的记忆效果。 在MR的助力下,消防安全…...
geecg-uniapp 同源策略 数据请求 获取后台数据 进行页面渲染 ui库安装 冲突解决(3)
一,同源策略 (1)首先找到env 要是没有env 需要创建一个替换成后端接口 (2)因为他封装了 先找到 http 请求位置一级一级找 然后进行接口修改 (3)appUpdata 修改接口 运行即可 &#x…...
Krypton控件组使用之KryptonRibbon
1.去掉File按钮 2.去掉 Cutomize 菜单...
低压配电系统中浪涌保护器的作用,安装位置和接线方法
低压配电系统是指在变压器低压侧或用户侧的电气装置,主要用于向用户提供安全、可靠和经济的电能。低压配电系统中常见的电气设备有低压配电柜、分支箱、开关箱、插座、照明等。这些设备都需要防止因外部或内部原因产生的过电压对其造成损坏或影响其正常工作。过电压…...
OpenCV实现答题卡自动打分!
目录 1,主要原理以及函数介绍 全部代码,以 2 , 实现过程 3,结果展示 1,主要原理以及函数介绍 ap argparse.ArgumentParser() 创建一个ArgumentParser对象,并将其赋值给变量ap。这个对象可以接受我们的脚…...
Python编程必备:掌握列表遍历的6种神级技巧!
更多资料获取 📚 个人网站:涛哥聊Python 遍历列表是Python中最常见的任务之一,因为列表是一种非常常用的数据结构,它用于存储一组项目。 在编程中,经常需要对这些项目进行操作,例如查找特定元素ÿ…...
nodejs+vue校园失物招领平台
失物人可以在该平台中发布自己的拾物信息,本毕业设计题目将设计与实现一个基于校园的非商业行为的网上校园失物招领平台。并给出自己附加的各项条件, 失物招领管理系统主要分为两个部分,涉及前台和后台,然后由失主通过校园失物招…...
leetcode做题笔记171. Excel 表列序号
给你一个字符串 columnTitle ,表示 Excel 表格中的列名称。返回 该列名称对应的列序号 。 例如: A -> 1 B -> 2 C -> 3 ... Z -> 26 AA -> 27 AB -> 28 ... 示例 1: 输入: columnTitle "A" 输出: 1示例 2: 输入: colu…...
SW曲面实体导出工程图
...
Docker的私有仓库部署——Harbor
Harbor 简介 一、什么是Harbor Harbor 是 VMware 公司开源的企业级 Docker Registry 项目, 其目标是帮助用户迅速搭建一个企业级的 Docker Registry 服务。 Harbor以 Docker 公司开源的 Registry 为基础, 提供了图形管理 UI 、基于角色的访问控制(Role…...
JavaScript反爬虫技巧详细攻略
在互联网时代,网站采取了各种手段来防止被爬虫抓取数据,其中最常见的就是JavaScript反爬虫技巧。本文将揭示一些常用的JavaScript反爬虫技巧,并提供一些实际操作建议,帮助您保护自己的爬虫免受检测和封禁。 1、为什么网站使用Java…...
C++基础入门学习笔记
问题1:什么是 C 中的多态?如何实现多态? 回答1:C 中的多态是指同一种类型的实体,可以在不同的情况下表现出不同的行为。实现多态的方式有两种:虚函数和模板函数。虚函数是在基类中声明为虚函数的函数&…...
手机cpu架构查看及armeabi、armeabi-v7a、arm64-v8a及x86等说明
一、如何查看cpu加购 winR,输入cmd 填下指令如下 adb shell getprop ro.product.cpu.abi 二、架构描述 1.armeabiv-v7a: 第7代及以上的 ARM 处理器。2011年15月以后的生产的大部分Android设备都使用它. 2.arm64-v8a: 第8代、64位ARM处理器,很少设备&a…...
node-sass报错,node16运行node14的项目
原来项目是node14的版本,现在用node16运行npm i 会报以下错误 node-sass4.14.1 postinstall: node scripts/build.js npm ERR! Exit status 1 npm ERR! npm ERR! Failed at the node-sass4.14.1 postinstall script. npm ERR! This is probably not a problem with …...
在Linux中掌握不同的命令,让创建文件变得易如反掌
在Linux中创建一个新文件很简单,但也有一些令人惊讶和灵巧的技术。在本教程中,学习如何从Linux终端创建文件。 先决条件 访问命令行/终端窗口(Ctrl-Alt-F2或Ctrl-Alt-T) 具有sudo权限的用户帐户(对于某些文件/目录是可选的) 从命令行创建新的Linux文件 Linux的设计…...
iOS 14 YYAnimatedImageView加载图片失败处理
升级到iOS14,之前使用的YYimage框架全部不能正常显示图片,当然动态图正常显示,静态图无法显示; 原因是:14.0 系统调用了下面方法,YYAnimatedImageView没有正确处理 -(void)displayLayer:(CALayer )layer; 1 可以用以下…...
兴趣社如何搭建一个兴趣社区?
社交产品的本质是帮助用户提升社交的质量与效率,而兴趣则是找到本质的捷径。用户对兴趣社区的使用主要是围绕兴趣爱好,社交属性以及粉丝活动三个方向。对感兴趣的话题,用户天然有更强的分享讨论欲,更期待与人社交互动。“越垂直的…...
腾讯wifi码推广如何代理?方法详解!
腾讯wifi码推广是一种利用微信扫码连接商家wifi的方式,用户看完广告后就可以免费上网,而推广者则可以获得广告收益。 那么怎样代理腾讯wifi码推广呢? 答案是腾讯官方没有这个项目,那是怎么回事呢,腾讯wifi码正确的名称…...
linux下读取socket相关的系统调用总结
recv 函数原型 /* Read N bytes into BUF from socket FD.Returns the number read or -1 for errors.This function is a cancellation point and therefore not marked with__THROW. */ extern ssize_t recv (int __fd, void *__buf, size_t __n, int __flags); 所属文件…...
【网络】每天掌握一个Linux命令 - iftop
在Linux系统中,iftop是网络管理的得力助手,能实时监控网络流量、连接情况等,帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...
Java 8 Stream API 入门到实践详解
一、告别 for 循环! 传统痛点: Java 8 之前,集合操作离不开冗长的 for 循环和匿名类。例如,过滤列表中的偶数: List<Integer> list Arrays.asList(1, 2, 3, 4, 5); List<Integer> evens new ArrayList…...
Day131 | 灵神 | 回溯算法 | 子集型 子集
Day131 | 灵神 | 回溯算法 | 子集型 子集 78.子集 78. 子集 - 力扣(LeetCode) 思路: 笔者写过很多次这道题了,不想写题解了,大家看灵神讲解吧 回溯算法套路①子集型回溯【基础算法精讲 14】_哔哩哔哩_bilibili 完…...
Cinnamon修改面板小工具图标
Cinnamon开始菜单-CSDN博客 设置模块都是做好的,比GNOME简单得多! 在 applet.js 里增加 const Settings imports.ui.settings;this.settings new Settings.AppletSettings(this, HTYMenusonichy, instance_id); this.settings.bind(menu-icon, menu…...
C# SqlSugar:依赖注入与仓储模式实践
C# SqlSugar:依赖注入与仓储模式实践 在 C# 的应用开发中,数据库操作是必不可少的环节。为了让数据访问层更加简洁、高效且易于维护,许多开发者会选择成熟的 ORM(对象关系映射)框架,SqlSugar 就是其中备受…...
工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配
AI3D视觉的工业赋能者 迁移科技成立于2017年,作为行业领先的3D工业相机及视觉系统供应商,累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成,通过稳定、易用、高回报的AI3D视觉系统,为汽车、新能源、金属制造等行…...
C++ Visual Studio 2017厂商给的源码没有.sln文件 易兆微芯片下载工具加开机动画下载。
1.先用Visual Studio 2017打开Yichip YC31xx loader.vcxproj,再用Visual Studio 2022打开。再保侟就有.sln文件了。 易兆微芯片下载工具加开机动画下载 ExtraDownloadFile1Info.\logo.bin|0|0|10D2000|0 MFC应用兼容CMD 在BOOL CYichipYC31xxloaderDlg::OnIni…...
Angular微前端架构:Module Federation + ngx-build-plus (Webpack)
以下是一个完整的 Angular 微前端示例,其中使用的是 Module Federation 和 npx-build-plus 实现了主应用(Shell)与子应用(Remote)的集成。 🛠️ 项目结构 angular-mf/ ├── shell-app/ # 主应用&…...
Go语言多线程问题
打印零与奇偶数(leetcode 1116) 方法1:使用互斥锁和条件变量 package mainimport ("fmt""sync" )type ZeroEvenOdd struct {n intzeroMutex sync.MutexevenMutex sync.MutexoddMutex sync.Mutexcurrent int…...
Golang——6、指针和结构体
指针和结构体 1、指针1.1、指针地址和指针类型1.2、指针取值1.3、new和make 2、结构体2.1、type关键字的使用2.2、结构体的定义和初始化2.3、结构体方法和接收者2.4、给任意类型添加方法2.5、结构体的匿名字段2.6、嵌套结构体2.7、嵌套匿名结构体2.8、结构体的继承 3、结构体与…...
