当前位置: 首页 > news >正文

【动手学深度学习-Pytorch版】BERT预测系列——用于预测的BERT数据集

本小节的主要任务即是将wiki数据集转成BERT输入序列,具体的任务包括:

  • 读取wiki数据集
  • 生成下一句预测任务的数据—>主要用于_get_nsp_data_from_paragraph函数
  • 从输入paragraph生成用于下一句预测的训练样本:_get_nsp_data_from_paragraph
  • 生成遮蔽语言模型任务的数据—>将生成的tokens的一部分随机换成masked的tokens,用于_get_mlm_data_from_tokens函数
  • 得到掩蔽语言模型的数据:_get_mlm_data_from_tokens函数
  • 将输入信息附加特殊词元< mask >
  • 下载并生成WikiText-2数据集,并从中生成预训练样本:load_data_wiki函数
  • 得到train_itervocab
"""较小的语料库WikiText-2"""
import os
import random
import torch
from d2l import torch as d2l
#@save
d2l.DATA_HUB['wikitext-2'] = ('https://s3.amazonaws.com/research.metamind.io/wikitext/''wikitext-2-v1.zip', '3c914d17d80b1459be871a5039ac23e752a53cbe')
"""仅使用句号作为分隔符来拆分句子"""
#@save
def _read_wiki(data_dir):file_name = os.path.join(data_dir, 'wiki.train.tokens')with open(file_name, 'r',encoding='utf-8') as f:lines = f.readlines()# 大写字母转换为小写字母paragraphs = [line.strip().lower().split(' . ')for line in lines if len(line.split(' . ')) >= 2]random.shuffle(paragraphs)return paragraphs#  生成下一句预测任务的数据--->用于:_get_nsp_data_from_paragraph函数
#@save
def _get_next_sentence(sentence, next_sentence, paragraphs):if random.random() < 0.5:is_next = Trueelse:# paragraphs是三重列表的嵌套next_sentence = random.choice(random.choice(paragraphs))is_next = Falsereturn sentence, next_sentence, is_next"""
下面的函数通过调用_get_next_sentence函数从输入paragraph生成用于下一句预测的训练样本。
这里paragraph是句子列表,其中每个句子都是词元列表。自变量max_len指定预训练期间的BERT输入序列的最大长度。
"""
#@save
def _get_nsp_data_from_paragraph(paragraph, paragraphs, vocab, max_len):nsp_data_from_paragraph = []"""nsp_data_from_paragraph中的每一个元素都是(tokens,segments,is_next)(词元,句子属性,是否是下一个句子)"""for i in range(len(paragraph) - 1):tokens_a, tokens_b, is_next = _get_next_sentence(paragraph[i], paragraph[i + 1], paragraphs)# 考虑1个'<cls>'词元和2个'<sep>'词元if len(tokens_a) + len(tokens_b) + 3 > max_len:continuetokens, segments = d2l.get_tokens_and_segments(tokens_a, tokens_b)nsp_data_from_paragraph.append((tokens, segments, is_next))return nsp_data_from_paragraph# 生成遮蔽语言模型任务的数据---》将生成的tokens的一部分随机换成masked的tokens
# -》》用于_get_mlm_data_from_tokens函数
"""
输入:
1、tokens:表示BERT输入序列的词元的列表
2、candidate_pred_positions:不包括特殊词元的BERT输入序列的词元索引的列表(特殊词元在遮蔽语言模型任务中不被预测)
3、num_mlm_preds:指示预测的数量(选择15%要预测的随机词元)
"""
#@save
def _replace_mlm_tokens(tokens, candidate_pred_positions, num_mlm_preds,vocab):# 为遮蔽语言模型的输入创建新的词元副本,其中输入可能包含替换的“<mask>”或随机词元mlm_input_tokens = [token for token in tokens]pred_positions_and_labels = []# 打乱后用于在遮蔽语言模型任务中获取15%的随机词元进行预测random.shuffle(candidate_pred_positions)for mlm_pred_position in candidate_pred_positions:# 如果生成的预测数量已经超过了最大的预测值 15% 就停止if len(pred_positions_and_labels) >= num_mlm_preds:breakmasked_token = None# 80%的时间:将词替换为“<mask>”词元if random.random() < 0.8:masked_token = '<mask>'else:# 10%的时间:保持词不变if random.random() < 0.5:masked_token = tokens[mlm_pred_position]# 10%的时间:用随机词替换该词else:masked_token = random.choice(vocab.idx_to_token)# 将masked的位置填入随机词元或保持不变或<mask>mlm_input_tokens[mlm_pred_position] = masked_tokenpred_positions_and_labels.append((mlm_pred_position, tokens[mlm_pred_position]))return mlm_input_tokens, pred_positions_and_labels"""
输入:BERT输入序列的tokens
输出:
1、输入词元的索引【词元已经被masked】
2、发生预测的词元索引
3、发生预测的标签索引
"""
"""当然,会有相关的词元会被masked"""
#@save
def _get_mlm_data_from_tokens(tokens, vocab):candidate_pred_positions = []# tokens是一个字符串列表for i, token in enumerate(tokens):# 在遮蔽语言模型任务中不会预测特殊词元if token in ['<cls>', '<sep>']:continuecandidate_pred_positions.append(i)# 遮蔽语言模型任务中预测15%的随机词元num_mlm_preds = max(1, round(len(tokens) * 0.15))mlm_input_tokens, pred_positions_and_labels = _replace_mlm_tokens(tokens, candidate_pred_positions, num_mlm_preds, vocab)pred_positions_and_labels = sorted(pred_positions_and_labels,key=lambda x: x[0])pred_positions = [v[0] for v in pred_positions_and_labels]mlm_pred_labels = [v[1] for v in pred_positions_and_labels]return vocab[mlm_input_tokens], pred_positions, vocab[mlm_pred_labels]"""
将特殊的“<mask>”词元附加到输入
"""
#@save
def _pad_bert_inputs(examples, max_len, vocab):max_num_mlm_preds = round(max_len * 0.15)all_token_ids, all_segments, valid_lens,  = [], [], []all_pred_positions, all_mlm_weights, all_mlm_labels = [], [], []nsp_labels = []for (token_ids, pred_positions, mlm_pred_label_ids, segments,is_next) in examples:# 如果长度不够会加入<pad>all_token_ids.append(torch.tensor(token_ids + [vocab['<pad>']] * (max_len - len(token_ids)), dtype=torch.long))# 而且所有的<pad>的segments都是0all_segments.append(torch.tensor(segments + [0] * (max_len - len(segments)), dtype=torch.long))# valid_lens不包括'<pad>'的计数 只是对token_ids计数,并不是对all_token_ids计数valid_lens.append(torch.tensor(len(token_ids), dtype=torch.float32))all_pred_positions.append(torch.tensor(pred_positions + [0] * (max_num_mlm_preds - len(pred_positions)), dtype=torch.long))# 填充词元的预测将通过乘以0权重在损失中过滤掉all_mlm_weights.append(torch.tensor([1.0] * len(mlm_pred_label_ids) + [0.0] * (max_num_mlm_preds - len(pred_positions)),dtype=torch.float32))all_mlm_labels.append(torch.tensor(mlm_pred_label_ids + [0] * (max_num_mlm_preds - len(mlm_pred_label_ids)), dtype=torch.long))nsp_labels.append(torch.tensor(is_next, dtype=torch.long))return (all_token_ids, all_segments, valid_lens, all_pred_positions,all_mlm_weights, all_mlm_labels, nsp_labels)#@save
class _WikiTextDataset(torch.utils.data.Dataset):def __init__(self, paragraphs, max_len):# 输入paragraphs[i]是代表段落的句子字符串列表;# 而输出paragraphs[i]是代表段落的句子列表,其中每个句子都是词元列表paragraphs = [d2l.tokenize(paragraph, token='word') for paragraph in paragraphs]sentences = [sentence for paragraph in paragraphsfor sentence in paragraph]self.vocab = d2l.Vocab(sentences, min_freq=5, reserved_tokens=['<pad>', '<mask>', '<cls>', '<sep>'])# 获取下一句子预测任务的数据examples = []for paragraph in paragraphs:examples.extend(_get_nsp_data_from_paragraph(paragraph, paragraphs, self.vocab, max_len))# 获取遮蔽语言模型任务的数据examples = [(_get_mlm_data_from_tokens(tokens, self.vocab)+ (segments, is_next))for tokens, segments, is_next in examples]# 填充输入(self.all_token_ids, self.all_segments, self.valid_lens,self.all_pred_positions, self.all_mlm_weights,self.all_mlm_labels, self.nsp_labels) = _pad_bert_inputs(examples, max_len, self.vocab)def __getitem__(self, idx):return (self.all_token_ids[idx], self.all_segments[idx],self.valid_lens[idx], self.all_pred_positions[idx],self.all_mlm_weights[idx], self.all_mlm_labels[idx],self.nsp_labels[idx])def __len__(self):return len(self.all_token_ids)"""下载并生成WikiText-2数据集,并从中生成预训练样本"""
#@save
def load_data_wiki(batch_size, max_len):"""加载WikiText-2数据集"""num_workers = d2l.get_dataloader_workers()data_dir = d2l.download_extract('wikitext-2', 'wikitext-2')paragraphs = _read_wiki(data_dir)train_set = _WikiTextDataset(paragraphs, max_len)train_iter = torch.utils.data.DataLoader(train_set, batch_size,shuffle=True, num_workers=num_workers)return train_iter, train_set.vocab
"""将批量大小设置为512,将BERT输入序列的最大长度设置为64,我们打印出小批量的BERT预训练样本的形状。"""
"""同时会有(64*0.15)的遮蔽语言模型需要预测的位置"""
batch_size, max_len = 512, 64
train_iter, vocab = load_data_wiki(batch_size, max_len)if __name__=='__main__':for (tokens_X, segments_X, valid_lens_x, pred_positions_X, mlm_weights_X,mlm_Y, nsp_y) in train_iter:print(tokens_X.shape, segments_X.shape, valid_lens_x.shape,pred_positions_X.shape, mlm_weights_X.shape, mlm_Y.shape,nsp_y.shape)break

相关文章:

【动手学深度学习-Pytorch版】BERT预测系列——用于预测的BERT数据集

本小节的主要任务即是将wiki数据集转成BERT输入序列&#xff0c;具体的任务包括&#xff1a; 读取wiki数据集生成下一句预测任务的数据—>主要用于_get_nsp_data_from_paragraph函数从输入paragraph生成用于下一句预测的训练样本&#xff1a;_get_nsp_data_from_paragraph生…...

【数据结构-字符串 三】【栈的应用】字符串解码

废话不多说&#xff0c;喊一句号子鼓励自己&#xff1a;程序员永不失业&#xff0c;程序员走向架构&#xff01;本篇Blog的主题是【字符串转换】&#xff0c;使用【字符串】这个基本的数据结构来实现&#xff0c;这个高频题的站点是&#xff1a;CodeTop&#xff0c;筛选条件为&…...

Stm32_标准库_10_TIM_显示时间日期

利用TIM计数耗费1s,启动中断&#xff0c;秒表加一 时间显示代码&#xff1a; #include "stm32f10x.h" // Device header #include "Delay.h" #include "OLED.h"uint16_t num 0; TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure; NVIC_I…...

10-SRCNN-使用CNN实现超分辨成像

文章目录 utils_dataset.pymodel.pytrain.pyuse.py主要文件 utils_dataset.py 工具文件,主要用来制作dataset,便于加入dataloader,用于实现数据集的加载和并行读取 model.py 主要写入网络(模型) train.py 主要用于训练 use.py 加载训练好的模型,用于测试或使用 utils_dat…...

cmd/bat 输出符,控制台日志输出到文件

前言 略 输出符 A > B将A执行结果覆盖写入B A >> B将A执行结果追加写入B 常用句柄 句柄句柄的数字代号描述STDIN0键盘输入STDOUT1输出到命令提示符窗口STDERR2错误输出到命令提示符窗口 控制台日志输出到文件 1.bat 1>d:\log.log将控制台日志输出到文件 d:…...

ODrive移植keil(七)—— 插值算法和偏置校准

目录 一、角度读取1.1、硬件接线1.2、程序演示1.3、代码说明 二、锁相环和插值算法2.1、锁相环2.2、插值2.3、角度补偿 三、偏置校准3.1、硬件接线3.2、官方代码操作3.3、移植后的代码操作3.4、代码说明3.5、SimpleFOC的偏置校准对比 ODrive、VESC和SimpleFOC 教程链接汇总&…...

【肌电信号】OpenSignals使用方法 --- 肌电信号采集及导入matlab

一、 多通道采集教学 1. 数据线连接 将PLUX设备通过USB或蓝牙与电脑连接&#xff0c;注意确认在几号通道接线。 2.实时数据采集可视化 进行设置。需要在软件中选择你的PLUX设备&#xff0c;并配置相关的参数&#xff0c;如采样率、分辨率、信号类型等 3 支持数据回放和…...

STM32 多功能按键中断

key1 开关实现led1亮灭,key2开关实现蜂鸣器开关,key3开关实现风扇开关 main.c #include "uart.h" #include "key_it.h" #include "led.h" int main() {char c;char *s;uart4_init();//串口初始化all_led_init();key_it_config();fengshan_init…...

Linux-文件管理命令

绝对路径&#xff1a;从根目录开始描述的路径 pwd输入即为绝对路径&#xff0c; 开头一定是“/”&#xff0c;因为一定是从根目录开始走 相对路径&#xff1a;从当前路径开始描述的路径&#xff0c;开头不一定是“/”&#xff0c;因为不一定是从根目录开始走的 .:是当前目录 。…...

JS DataTable中导出PDF右侧列被截断的问题解决

JS DataTable中导出PDF右侧列被截断的问题解决 文章目录 JS DataTable中导出PDF右侧列被截断的问题解决一. 问题二. 解决办法三. 代码四. 参考资料 一. 问题 二. 解决办法 设置PDF大小和版型 orientation: landscape, pageSize: LEGAL,上述代码设置打印的PDF尺寸为LEGAL&…...

学习笔记-MongoDB(复制集,分片集集群搭建)

复制集群搭建 基本介绍 什么是复制集&#xff1f; 复制集是由一组拥有相同数据集的MongoDB实例做组成的集群。 复制集是一个集群&#xff0c;它是2台及2台以上的服务器组成&#xff0c;以及复制集成员包括Primary主节点&#xff0c;Secondary从节点和投票节点。 复制集提供了…...

Servlet与设计模式

1 过滤器和包装器 过滤器可以拦截请求及控制响应&#xff0c;而servlet对此毫无感知。过滤器有如下作用&#xff1a; 1&#xff09;请求过滤器&#xff1a;完成安全检查、重新格式化请求首部或体、建立请求审计日志。 2&#xff09;响应过滤器&#xff1a;压缩响应流、追加或…...

Python学习基础笔记六十五——布尔值

布尔对象&#xff1a; Python中有一种对象类型称之为布尔对象&#xff08;英文叫bool&#xff09;。 布尔对象只有两种取值&#xff0c;True和False。对应的是真和假&#xff0c;或者说是和否。True对应的是&#xff0c;False对应的是否。 我觉得这句话是一个关键&#xff1a…...

ChatGPT生产力|实用指令(prompt)

GPT已经成为一个不可或缺的科研生产力了&#xff0c;但是大多数人只知晓采用直接提问、持续追问以及细节展开的方式来查阅相关资料&#xff0c;本文侧重于探讨“限定场景限定角色限定主题”、“可持续追问细节展开”等多种方式来获取更多信息&#xff0c;帮人们解决更多问题。 …...

【大数据Hive】hive select 语法使用详解

目录 一、前言 二、Hive select 完整语法树 三、Hive select 操作演示 3.1 数据准备 3.1.1 创建一张表 3.1.2 将数据load加载到t_usa_covid19表 3.1.3 再创建一张分区表 3.1.4 使用动态分区插入数据 3.2 select 常用语法 3.2.1 查询所有字段或者指定字段 3.2.2 查询…...

Android---java线程优化 偏向锁、轻量级锁和重量级锁

java 中的线程是映射到操作系统原生线程之上的&#xff0c;如果要阻塞或唤醒一个线程就需要操作系统的帮忙&#xff0c;这就需要从用户态转换到核心态。状态转换需要花费很多时间&#xff0c;如下代码所示&#xff1a; private Object lock new Object();private int value;p…...

处理机调度

目录 处理机调度概述 处理机调度的层次 低级调度 中级调度 高级调度 进程调度 进程调度的时机 进程调度的方式 非抢占式调度方式 抢占式调度方式 调度算法的评价指标 调度算法 先来先服务调度算法&#xff08;FCFS&#xff0c;First Come First Serve&#xff09; …...

Webpack 解决:ReferenceError: dist is not defined 的问题

1、问题描述&#xff1a; 其一、报错为&#xff1a; ReferenceError: dist is not defined 中文为&#xff1a; ReferenceError&#xff1a;dist 未定义 其二、问题描述为&#xff1a; 想在 webpack 的配置中&#xff0c;创建一个 dist 文件夹来存放 npm run build 打包后…...

MySQL的index merge(索引合并)导致数据库死锁分析与解决方案 | 京东云技术团队

背景 在DBS-集群列表-更多-连接查询-死锁中&#xff0c;看到9月22日有数据库死锁日志&#xff0c;后排查发现是因为mysql的优化-index merge&#xff08;索引合并&#xff09;导致数据库死锁。 定义 index merge(索引合并)&#xff1a;该数据库查询优化的一种技术&#xff0…...

第四章 网络层 | 计算机网络(谢希仁 第八版)

文章目录 第四章 网络层4.1 网络层提供的两种服务4.2 网际协议IP4.2.1 虚拟互连网络4.2.2 分类的IP地址4.2.3 IP地址与硬件地址4.2.4 地址解析协议ARP4.2.5 IP数据报的格式4.2.6 IP层转发分组的流程 4.3 划分子网和构造超网4.3.1 划分子网4.3.2 使用子网时分组的转发4.3.3 无分…...

设计模式和设计原则回顾

设计模式和设计原则回顾 23种设计模式是设计原则的完美体现,设计原则设计原则是设计模式的理论基石, 设计模式 在经典的设计模式分类中(如《设计模式:可复用面向对象软件的基础》一书中),总共有23种设计模式,分为三大类: 一、创建型模式(5种) 1. 单例模式(Sing…...

51c自动驾驶~合集58

我自己的原文哦~ https://blog.51cto.com/whaosoft/13967107 #CCA-Attention 全局池化局部保留&#xff0c;CCA-Attention为LLM长文本建模带来突破性进展 琶洲实验室、华南理工大学联合推出关键上下文感知注意力机制&#xff08;CCA-Attention&#xff09;&#xff0c;…...

边缘计算医疗风险自查APP开发方案

核心目标:在便携设备(智能手表/家用检测仪)部署轻量化疾病预测模型,实现低延迟、隐私安全的实时健康风险评估。 一、技术架构设计 #mermaid-svg-iuNaeeLK2YoFKfao {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg…...

学校招生小程序源码介绍

基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码&#xff0c;专为学校招生场景量身打造&#xff0c;功能实用且操作便捷。 从技术架构来看&#xff0c;ThinkPHP提供稳定可靠的后台服务&#xff0c;FastAdmin加速开发流程&#xff0c;UniApp则保障小程序在多端有良好的兼…...

【C语言练习】080. 使用C语言实现简单的数据库操作

080. 使用C语言实现简单的数据库操作 080. 使用C语言实现简单的数据库操作使用原生APIODBC接口第三方库ORM框架文件模拟1. 安装SQLite2. 示例代码:使用SQLite创建数据库、表和插入数据3. 编译和运行4. 示例运行输出:5. 注意事项6. 总结080. 使用C语言实现简单的数据库操作 在…...

使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度

文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...

安宝特方案丨船舶智造的“AR+AI+作业标准化管理解决方案”(装配)

船舶制造装配管理现状&#xff1a;装配工作依赖人工经验&#xff0c;装配工人凭借长期实践积累的操作技巧完成零部件组装。企业通常制定了装配作业指导书&#xff0c;但在实际执行中&#xff0c;工人对指导书的理解和遵循程度参差不齐。 船舶装配过程中的挑战与需求 挑战 (1…...

AI病理诊断七剑下天山,医疗未来触手可及

一、病理诊断困局&#xff1a;刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断"&#xff0c;医生需通过显微镜观察组织切片&#xff0c;在细胞迷宫中捕捉癌变信号。某省病理质控报告显示&#xff0c;基层医院误诊率达12%-15%&#xff0c;专家会诊…...

保姆级教程:在无网络无显卡的Windows电脑的vscode本地部署deepseek

文章目录 1 前言2 部署流程2.1 准备工作2.2 Ollama2.2.1 使用有网络的电脑下载Ollama2.2.2 安装Ollama&#xff08;有网络的电脑&#xff09;2.2.3 安装Ollama&#xff08;无网络的电脑&#xff09;2.2.4 安装验证2.2.5 修改大模型安装位置2.2.6 下载Deepseek模型 2.3 将deepse…...

推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材)

推荐 github 项目:GeminiImageApp(图片生成方向&#xff0c;可以做一定的素材) 这个项目能干嘛? 使用 gemini 2.0 的 api 和 google 其他的 api 来做衍生处理 简化和优化了文生图和图生图的行为(我的最主要) 并且有一些目标检测和切割(我用不到) 视频和 imagefx 因为没 a…...