当前位置: 首页 > news >正文

常用傅里叶变换表

  • 傅里叶展开

f(x)=\frac{a_0}{2}+\sum_{k=1}^\infty a_kcoskx+b_ksinkx

\left\{\begin{matrix} a_0=\frac{1}{\pi}\int_{-\pi}^{\pi}f(x)dx\\ a_n=\frac{1}{\pi}\int_{-\pi}^{\pi}f(x)cosnxdx\\ b_n=\frac{1}{\pi}\int_{-\pi}^{\pi}f(x)sinnxdx \end{matrix}\right.

  • 傅里叶变换

F(k)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{+\infty}f(x)e^{-ikx}dx

  • 傅里叶逆变换

f(x)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{+\infty}F(k)e^{ikx}dk



  • 时域信号

g(t)\equiv \frac{1}{\sqrt{2\pi}}\int_{-\infty}^{+\infty}G(\omega)e^{i\omega t}d\omega

  • 弧频域信号

G(f)=\int_{-\infty}^{+\infty}g(t)e^{-i2\pi ft}dt

  • 线性变换

a\cdot g(t)+b\cdot h(t)\rightarrow a\cdot G(f)+b\cdot H(f)

  • 时域平移

g(t-a)\rightarrow e^{-i2\pi af}G(f)

  • 频域平移

e^{iat}\rightarrow G(f-\frac{a}{2\pi})

  • 伸缩变换

g(at)\rightarrow\frac{1}{|a|}G(\frac{f}{a})

  • 微分性质

\frac{d^n}{dt^n}g(t)\rightarrow (i2\pi f)^nG(f)

  • 逆变换的微分性质

t^ng(t)\rightarrow (\frac{i}{2\pi})^n\frac{d^n}{df^n}G(f)

  • 卷积定理

(g*h)(t)\rightarrow G(f)H(f)

原函数变换结果
e^{iat}\delta(f-\frac{a}{2\pi})
e^{-at^2}\sqrt{\frac{\pi}{a}}\cdot e^{-\frac{(\pi f)^2}{a}}
cos(at)\frac{\delta(f-\frac{a}{2\pi})+\delta(f+\frac{a}{2\pi})}{2}
cos(at^2)\sqrt{\frac{\pi}{a}}cos(\frac{\pi^2f^2}{a}-\frac{\pi}{4})
sin(at)\frac{\delta(f-\frac{a}{2\pi})-\delta(f+\frac{a}{2\pi})}{2i}
sin(at^2)-\sqrt{\frac{\pi}{a}}sin(\frac{\pi^2f^2}{a}-\frac{\pi}{4})
e^{-a|t|}(a>0)\frac{2a}{a^2+4\pi^2f^2}
\frac{1}{\sqrt{|t|}}\frac{1}{\sqrt{|f|}}
1\delta(f)
\delta(t)1
t^n(\frac{i}{2\pi})^n\delta^{(n)}(f)
\frac{1}{t}-i\pi\cdot sgn(f)
\frac{1}{t^n}-i\pi\cdot \frac{(-i2\pi f)^{n-1}}{(n-1)!}\cdot sgn(f)
sgn(t)\frac{1}{i\pi f}
u(t)\frac{1}{2}(\frac{1}{i\pi f}+\delta(f))
e^{-at}u(t)\frac{1}{a+i2\pi f}
rect(at)\frac{1}{|a|}\cdot sinc(\frac{f}{a})
sinc(at)\frac{1}{|a|}\cdot rect(\frac{f}{a})

  • 单位阶跃函数:u(t) 
  • 符号函数:

sgn(x)=\left\{\begin{matrix} 1&x>0\\ 0&x=0\\ -1&x<0 \end{matrix}\right.

  • 矩形函数:

rect=\left\{\begin{matrix} 1 & |x|<\frac{1}{2}\\ 0 & others \end{matrix}\right.

  • 辛格函数:

sinc(x)=\frac{sin(\pi x)}{\pi x}

相关文章:

常用傅里叶变换表

傅里叶展开 傅里叶变换 傅里叶逆变换 时域信号 弧频域信号 线性变换 时域平移 频域平移 伸缩变换 微分性质 逆变换的微分性质 卷积定理 原函数变换结果 单位阶跃函数&#xff1a; 符号函数&#xff1a; 矩形函数&#xff1a; 辛格函数&#xff1a;...

生活中的视音频技术

生活中的视音频技术 平时我们打开电脑中自己存电影的目录的话&#xff0c;一般都会如下图所示&#xff0c;一大堆五花八门的电影。&#xff08;其实专业的影视爱好者一概会把影视文件分门别类的&#xff0c;但我比较懒&#xff0c;一股脑把电影放在了一起&#xff09; 因为下载…...

一种用于肽图分析的烷化剂,Desthiobiotin-Iodoacetamide

中文名&#xff1a;脱硫生物素-碘乙酰胺 英文名&#xff1a;Desthiobiotin-Iodoacetamide 化学式&#xff1a;C14H25IN4O3 分子量&#xff1a;424.28 外观&#xff1a;固体/粉末 规格&#xff1a;10mg、25mg、50mg等&#xff08;接受各种规格的定制服务&#xff0c;具体可…...

【(数据结构) —— 顺序表的应用-通讯录的实现】

&#xff08;数据结构&#xff09;—— 顺序表的应用-通讯录的实现 一.通讯录的功能介绍1.基于动态顺序表实现通讯录(1). 功能要求(2).重要思考 二. 通讯录的代码实现1.通讯录的底层结构(顺序表)(1)思路展示(2)底层代码实现(顺序表&#xff09; 2.通讯录上层代码实现(通讯录结构…...

macbook磁盘清理免费教程分享

笔记本电脑在是我们工作和生活中重要组成部分&#xff0c;磁盘清理是常有的事&#xff0c;而macbook作为其中的代表之一&#xff0c;也越来越受到人们的青睐。然而&#xff0c;如何进行macbook磁盘清理&#xff0c;也事许多人都会遇到的问题&#xff0c;特别是被提示“磁盘已满…...

cartographer_ros数据加载与处理

node_main.cc 坐标系的读取通过tf_bufferautonode类是cartographer_ros接收传感器数据&#xff0c;并传输到cartographer里&#xff0c;同时还会发布map&#xff0c;轨迹等node_options数据传给两个地方&#xff0c;一个是map_builder进行slam操作&#xff0c;一个是node做数据…...

设计模式-7种结构型模式

适配器模式&#xff1a; 将一个类的接口转换成用户希望得到的另一种接口。它使原本不相容的接口得以协同调用。 桥接模式&#xff1a; 将类的抽象部分和他的实现部分分离开来。是他们可以独立的变化。 它是用组合关系代替继承关系来实现&#xff0c;从而降低了抽象和实现这两…...

华为李鹏:加速5G商业正循环,拥抱更繁荣的5.5G(5G-A)

2023年10月10日&#xff0c;在华为主办的第十四届全球移动宽带论坛上&#xff0c;华为高级副总裁、运营商BG总裁李鹏面向来自全球的运营商和产业伙伴&#xff0c;提出抓住网络需求和趋势的力量——“面向后天的业务&#xff0c;积极规划明天的网络&#xff0c;加速5G商业正循环…...

Marin说PCB之CoilcraftBourns POC 电感的性能对比

十一小长假本来是一件美好事情。可是天有不测风云&#xff0c;小编我却有祸兮来了。本来是公司的硬件同事强哥要回以色列了&#xff0c;最近他们国家那边都在打仗&#xff0c;强哥本着舍身为国的精神回国抗战去了。小编我就想着在他回国之前搞了篮球比赛送别一下他呢&#xff0…...

聊聊Maven的依赖传递、依赖管理、依赖作用域

1. 依赖传递 在Maven中&#xff0c;依赖是会传递的&#xff0c;假如在业务项目中引入了spring-boot-starter-web依赖&#xff1a; <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId>…...

centos6/7 SOCKS5 堆溢出漏洞修复(RPM方式)curl 8.4 CVE-2023-38545 CVE-2023-38546

引用 https://darkdark.top/update-curl.html centos6 rpm 升级包下载&#xff1a;https://download.csdn.net/download/sinat_24092079/88425840 yum update libcurl-8.4.0-1.el6.1.x86_64.rpm curl-8.4.0-1.el6.1.x86_64.rpmcentos7 rpm 升级包下载&#xff1a;https://down…...

C#,数值计算——数据建模Proposal的计算方法与源程序

1 文本格式 using System; namespace Legalsoft.Truffer { public class Proposal { public Normaldev gau { get; set; } null; private double logstep { get; set; } public Proposal(int ranseed, double lstep) { this.gau…...

如何使用命令生成动态链接库.dll文件(保姆级教学)

如何使用命令生成动态链接库.dll文件 /*** file 如何使用命令生成动态链接库.dll文件* author jUicE_g2R(qq:3406291309)* * brief 教学演示* tool visual studio2022&#xff08;2019也适用&#xff09;* * copyright 2023.10* COPYR…...

Qt之模块介绍

Qt提供了很多功能模块&#xff0c;我们需要知道的是这些模块有些加入了标准库&#xff0c;有一些并没有加入到标准库。至于为什么没有加入到标准库通过chatgpt得到的答案如下&#xff1a; Qt 是一个强大的跨平台 C 框架&#xff0c;它包括了很多核心模块和功能&#xff0c;以支…...

Socks5代理和代理IP

在数字时代&#xff0c;网络工程师必须不断掌握新技术&#xff0c;以解决跨界电商、爬虫数据采集、出海业务扩展、网络安全保护以及游戏性能优化等各种技术挑战。本文将深入探讨Socks5代理和代理IP技术&#xff0c;它们在各个领域中的应用&#xff0c;如何为网络工程师提供了强…...

计算机指令、机器码

目录 背景 在软硬件接口中&#xff0c;CPU 帮我们做了什么事&#xff1f; 从编译到汇编&#xff0c;代码怎么变成机器码&#xff1f; 解析指令和机器码 总结延伸 背景 上大学的时候&#xff0c;我们系里教 C 语言程序设计的老师说&#xff0c;他们当年学写程序的时候&…...

MyLife - Docker安装Consul

Docker安装Consul 个人觉得像consul之类的基础设施在线上环境直接物理机安装使用可能会好些。但是在开发测试环境用docker容器还是比较方便的。这里学习下docker安装consul使用。 1. Consul 镜像库地址 Consul 镜像库地址&#xff1a;https://hub.docker.com/r/hashicorp/consu…...

Leetcode刷题笔记--Hot61-70

1--课程表&#xff08;207&#xff09; 主要思路&#xff1a; 用 in 记录每一门课程剩余的先修课程个数&#xff0c;当剩余先修课程个数为0时&#xff0c;将该课程加入到队列q中。 每修队列q中的课程&#xff0c;以该课程作为先修课程的所有课程&#xff0c;其剩余先修课程个数…...

python特别篇—github基本操作手册

一、开始使用 1.1 “Hello world” 1.1.1 github介绍 GitHub是一个基于Git版本控制系统的代码托管平台。它提供了一个在线的代码仓库&#xff0c;使开发者可以将自己的代码存储在云端&#xff0c;并与其他开发者进行协作。GitHub不仅仅是一个代码托管平台&#xff0c;还提供了…...

tiktok直播websocket序列化与反序列化

系列文章目录 websocket训练地址:https://www.qiulianmao.com,正在搭建中 基础-websocket逆向基础-http拦截基础-websocket拦截基础-base64编码与解码基础-protobuf序列化与反序列化视频号直播弹幕采集tiktok protobuf序列化与反序列化实战一:Http轮询更新中tikto...

React Native 导航系统实战(React Navigation)

导航系统实战&#xff08;React Navigation&#xff09; React Navigation 是 React Native 应用中最常用的导航库之一&#xff0c;它提供了多种导航模式&#xff0c;如堆栈导航&#xff08;Stack Navigator&#xff09;、标签导航&#xff08;Tab Navigator&#xff09;和抽屉…...

解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八

现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet&#xff0c;点击确认后如下提示 最终上报fail 解决方法 内核升级导致&#xff0c;需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...

React19源码系列之 事件插件系统

事件类别 事件类型 定义 文档 Event Event 接口表示在 EventTarget 上出现的事件。 Event - Web API | MDN UIEvent UIEvent 接口表示简单的用户界面事件。 UIEvent - Web API | MDN KeyboardEvent KeyboardEvent 对象描述了用户与键盘的交互。 KeyboardEvent - Web…...

论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)

笔记整理&#xff1a;刘治强&#xff0c;浙江大学硕士生&#xff0c;研究方向为知识图谱表示学习&#xff0c;大语言模型 论文链接&#xff1a;http://arxiv.org/abs/2407.16127 发表会议&#xff1a;ISWC 2024 1. 动机 传统的知识图谱补全&#xff08;KGC&#xff09;模型通过…...

2025盘古石杯决赛【手机取证】

前言 第三届盘古石杯国际电子数据取证大赛决赛 最后一题没有解出来&#xff0c;实在找不到&#xff0c;希望有大佬教一下我。 还有就会议时间&#xff0c;我感觉不是图片时间&#xff0c;因为在电脑看到是其他时间用老会议系统开的会。 手机取证 1、分析鸿蒙手机检材&#x…...

涂鸦T5AI手搓语音、emoji、otto机器人从入门到实战

“&#x1f916;手搓TuyaAI语音指令 &#x1f60d;秒变表情包大师&#xff0c;让萌系Otto机器人&#x1f525;玩出智能新花样&#xff01;开整&#xff01;” &#x1f916; Otto机器人 → 直接点明主体 手搓TuyaAI语音 → 强调 自主编程/自定义 语音控制&#xff08;TuyaAI…...

Java多线程实现之Thread类深度解析

Java多线程实现之Thread类深度解析 一、多线程基础概念1.1 什么是线程1.2 多线程的优势1.3 Java多线程模型 二、Thread类的基本结构与构造函数2.1 Thread类的继承关系2.2 构造函数 三、创建和启动线程3.1 继承Thread类创建线程3.2 实现Runnable接口创建线程 四、Thread类的核心…...

Xen Server服务器释放磁盘空间

disk.sh #!/bin/bashcd /run/sr-mount/e54f0646-ae11-0457-b64f-eba4673b824c # 全部虚拟机物理磁盘文件存储 a$(ls -l | awk {print $NF} | cut -d. -f1) # 使用中的虚拟机物理磁盘文件 b$(xe vm-disk-list --multiple | grep uuid | awk {print $NF})printf "%s\n"…...

【电力电子】基于STM32F103C8T6单片机双极性SPWM逆变(硬件篇)

本项目是基于 STM32F103C8T6 微控制器的 SPWM(正弦脉宽调制)电源模块,能够生成可调频率和幅值的正弦波交流电源输出。该项目适用于逆变器、UPS电源、变频器等应用场景。 供电电源 输入电压采集 上图为本设计的电源电路,图中 D1 为二极管, 其目的是防止正负极电源反接, …...

力扣热题100 k个一组反转链表题解

题目: 代码: func reverseKGroup(head *ListNode, k int) *ListNode {cur : headfor i : 0; i < k; i {if cur nil {return head}cur cur.Next}newHead : reverse(head, cur)head.Next reverseKGroup(cur, k)return newHead }func reverse(start, end *ListNode) *ListN…...