当前位置: 首页 > news >正文

[23] IPDreamer: Appearance-Controllable 3D Object Generation with Image Prompts

pdf

  • Text-to-3D任务中,对3D模型外观的控制不强,本文提出IPDreamer来解决该问题。
  • 在NeRF Training阶段,IPDreamer根据文本用ControlNet生成参考图,并将参考图作为Zero 1-to-3的控制条件,用基于Zero 1-to-3的SDS损失生成粗NeRF。
  • 在Mesh Training阶段,IPDreamer将NeRF用DMTet转换为3D Mesh,并分别优化Mesh的几何与纹理。1)用参考图的法向图编码作为控制信号,用IPSD (Image Prompt Score Distillation) 优化3D Mesh的几何;2)用渲染rgb图像编码(和法向图差异)作为控制信号,用IPSD优化3D Mesh的纹理。
  • 将Text-to-3D任务,转换为单图重建任务,实现了更好的外观控制。

目录

Method

NeRF Training

Mesh Training

Experiments

Some Results

​编辑Comparison with SOTA Text-to-3D Methods


Method

NeRF Training

  • Image Generation. 给定文本描述和控制条件,本文用ControlNet生成参考图片。
  • Training of the Coarse NeRF Model. 给定参考图片,本文用基于Zero 1-to-3的SDS损失生成粗NeRF。

Mesh Training

  • Mesh Extraction. 给定粗NeRF,本文用DMTet将其转换为3D Mesh。3D Mesh由顶点V和四面体T(tetrahedrons)组成。每个顶点包含一个signed distance field (SDF) 值s_i \in S和形变值\Delta{v_{i}} \in \Delta V组成。\Delta{v_{i}}描述了相较于初始正则坐标的变换。本文基于IPSD优化\Delta V, S, \theta
  • Geometry Optimization. Fantasia3D和ProlificDreamer用SDS优化3D Mesh的法向图,实现几何优化。但常用扩散模型缺少法向图的训练数据,导致几何优化效果不佳。为解决该问题,本文引入法向图编码y_n = \varepsilon_{\mathrm{image}}(I_n),其中\varepsilon_{\mathrm{image}}是IP-Adapter的denosing model。IPSD几何损失表达如下:

  • Texture Optimization. 首先,提取参考图像编码y_{\mathrm{rgb}} = \varepsilon_{\mathrm{image}}(I_{\mathrm{rgb}})。其次,计算渲染角度和参考角度的法向图编码,并计算差值得到\delta_{geo}。这一步的目的是希望用y_{rgb} + \delta_{geo}来表征任意渲染角度图像的图像编码。IPSD纹理损失表达如下:

Experiments

Some Results

Comparison with SOTA Text-to-3D Methods

相关文章:

[23] IPDreamer: Appearance-Controllable 3D Object Generation with Image Prompts

pdf Text-to-3D任务中,对3D模型外观的控制不强,本文提出IPDreamer来解决该问题。在NeRF Training阶段,IPDreamer根据文本用ControlNet生成参考图,并将参考图作为Zero 1-to-3的控制条件,用基于Zero 1-to-3的SDS损失生成…...

深入理解React中的useEffect钩子函数

引言: React是一种流行的JavaScript库,它通过组件化和声明式编程的方式简化了前端开发。在React中,一个核心概念是组件的生命周期,其中包含了许多钩子函数,用于管理组件的不同阶段。其中之一就是useEffect钩子函数&…...

数字化时代的财务管理:挑战与机遇

导语:随着数字化技术的不断发展,财务管理正面临着前所未有的挑战和机遇。数字化不仅改变了财务数据的收集、处理和分析方式,还为财务决策提供了更多的依据和方向。本文将探讨数字化时代财务管理的新特点,以及如何利用数字化技术提…...

网络通信协议-HTTP、WebSocket、MQTT的比较与应用

在今天的数字化世界中,各种通信协议起着关键的作用,以确保信息的传递和交换。HTTP、WebSocket 和 MQTT 是三种常用的网络通信协议,它们各自适用于不同的应用场景。本文将比较这三种协议,并探讨它们的主要应用领域。 HTTP&#xff…...

【深度学习】深度学习实验四——循环神经网络(RNN)、dataloader、长短期记忆网络(LSTM)、门控循环单元(GRU)、超参数对比

一、实验内容 实验内容包含要进行什么实验,实验的目的是什么,实验用到的算法及其原理的简单介绍。 1.1 循环神经网络 (1)理解序列数据处理方法,补全面向对象编程中的缺失代码,并使用torch自带数据工具将数据封装为dataloader。 (2)分别采用手动方式以及调用接口方式…...

DB2分区表详解

一、分区表基本概念 当表中的数据量不断增大,查询数据的速度就会变慢,应用程序的性能就会下降,这时就应该考虑对表进行分区。分区后的表称为分区表。 表进行分区后,逻辑上表仍然是一张完整的表,只是将表中的数据在物理上存放到多个“表空间”(物理文件上),这样查询数据时…...

基本地址变换机构

基本地址变换机构:用于实现逻辑地址到物理地址转换的一组硬件机构。 关于页号页表的定义,放个本人的传送门 1.页表寄存器 基本地址变换机构可以借助进程的页表将逻辑地址转换为物理地址。 1.作用 通常会在系统中设置一个页表寄存器(PTR&…...

以单颗CMOS摄像头重构三维场景,维悟光子发布单目红外3D成像模组

维悟光子近期发布全新单目红外3D成像模组,现可提供下游用户进行测试导入。通过结合微纳光学元件编码和人工智能算法解码,维悟光子单目红外3D成像模组采用单颗摄像头,通过单帧拍摄,可同时获取像素级配准的3D点云和红外图像信息,可被应用于机器人、生物识别等广阔领域。 市场…...

Jinja2模板注入 | python模板注入特殊属性 / 对象讲解

在进行模板利用的时候需要使用特殊的属性和对象进行利用,这里对这些特殊属性及方法进行讲解 以下实验输出python3版本为 3.10.4, python2版本为 2.7.13 特殊属性 __class__ 类实例上使用,它用于获取该实例对应的类__base__ 用于获取父类__mr…...

一致性公式证明

首先,假设存在两个不同的聚类假设 f 1 f^1 f1和 f 2 f^2 f2,它们在两个视角上的聚类结果分别为 y 1 ∈ { − 1 , 1 } n y^1\in\{-1,1\}^n y1∈{−1,1}n和 y 2 ∈ { − 1 , 1 } n y^2\in\{-1,1\}^n y2∈{−1,1}n。 证明一致性不等式: ​ …...

allegro中shape的一些基本操作(一)——添加和修改shape

添加shape 简单添加shape的方式有3种,如下图所示 点击选择相应的shape模式后可以在option面板中设置相应的shape参数(这里不做过多介绍,里面可以设置shape的大小、静态或动态shape等参数),然后再用鼠标在相应的层上添…...

HBuilder创建uniapp默认项目导入uview(胎教)

1:更新HBuilder 建议更新 2:更新插件 我本人在没有更新插件的情况下报错了,找到了**这个大佬**解决问题,所以建议更新插件 先卸载uni-app(Vue2)编译 再重新安装 uni-app(Vue2)…...

C语言基础算法复习

003 斐波那契数列问题 #include<stdio.h> int main() {int i,f11,f21,f3,num;printf("%5d %5d",f1,f2);num2;for(i1; i<18; i){f3f1f2;f1f2;f2f3;num;printf("%5d",f3);if(num%40) printf("\n");}return 0; }//#输数斐波那契数列的前20…...

PyQt界面里如何加载本地视频以及调用摄像头实时检测(小白入门必看)

目录 1.PyQt介绍 2.代码实现 2.1实时调用摄像头 2.2 使用YOLOv5推理 2.3 代码中用到的主要函数 1.PyQt介绍 PyQt是一个用于创建桌面应用程序的Python绑定库&#xff0c;它基于Qt框架。Qt是一个跨平台的C应用程序开发框架&#xff0c;提供了丰富的图形界面、网络通信、数据…...

Ubuntu:VS Code IDE安装ESP-IDF【保姆级】

物联网开发学习笔记——目录索引 参考&#xff1a; VS Code官网&#xff1a;Visual Studio Code - Code Editing. Redefined 乐鑫官网&#xff1a;ESP-IDF 编程指南 - ESP32 VSCode ESP-ID Extension Install 一、前提条件 Visual Studio Code IDE安装ESP-IDF扩展&…...

软考高级系统架构设计师系列之:快速掌握软件工程核心知识点

软考高级系统架构设计师系列之:快速掌握软件工程核心知识点 一、软件开发方法二、软件开发模型三、软件开发模型-瀑布模型四、软件开发模型-经典模型汇总五、软件开发模型-增量模型与螺旋模型六、软件开发模型-V模型七、软件开发模型-构件组装模型八、软件开发模型-统一过程九…...

Java基础面试-ArrayList和LinkedList的区别

ArrayList: 基于动态数组&#xff0c;连续内存存储&#xff0c;适合下标访问(随机访问)&#xff0c;扩容机制: 因为数组长度固定&#xff0c;超出长度存数据时需要新建数组&#xff0c;然后将老数组的数据拷贝到新数组&#xff0c;如果不是尾部插入数据还会涉及到元素的移动(往…...

如何从 Pod 内访问 Kubernetes 集群的 API

Kubernetes API 是您检查和管理集群操作的途径。您可以使用Kubectl CLI、工具(例如curl)或流行编程语言的官方集成库来使用 API 。 该 API 也可供集群内的应用程序使用。Kubernetes Pod 会自动获得对 API 的访问权限,并且可以使用提供的服务帐户进行身份验证。您可以通过使…...

计网面试复习自用

五层&#xff1a; 应用层&#xff1a;应用层是最高层&#xff0c;负责为用户提供网络服务和应用程序。在应用层&#xff0c;用户应用程序与网络进行交互&#xff0c;发送和接收数据。典型的应用层协议包括HTTP&#xff08;用于网页浏览&#xff09;、SMTP&#xff08;用于电子邮…...

【Android 性能优化:内存篇】——WebView 内存泄露治理

背景&#xff1a;笔者在公司项目中优化内存泄露时发现WebView 相关的内存泄露问题非常经典&#xff0c;一个 Fragment 页面使用的 WebView 有多条泄露路径&#xff0c;故记录下。 Fragment、Activity 使用WebView不释放 项目中一个Fragment 使用 Webview&#xff0c;在 Fragm…...

Chapter03-Authentication vulnerabilities

文章目录 1. 身份验证简介1.1 What is authentication1.2 difference between authentication and authorization1.3 身份验证机制失效的原因1.4 身份验证机制失效的影响 2. 基于登录功能的漏洞2.1 密码爆破2.2 用户名枚举2.3 有缺陷的暴力破解防护2.3.1 如果用户登录尝试失败次…...

【位运算】消失的两个数字(hard)

消失的两个数字&#xff08;hard&#xff09; 题⽬描述&#xff1a;解法&#xff08;位运算&#xff09;&#xff1a;Java 算法代码&#xff1a;更简便代码 题⽬链接&#xff1a;⾯试题 17.19. 消失的两个数字 题⽬描述&#xff1a; 给定⼀个数组&#xff0c;包含从 1 到 N 所有…...

ETLCloud可能遇到的问题有哪些?常见坑位解析

数据集成平台ETLCloud&#xff0c;主要用于支持数据的抽取&#xff08;Extract&#xff09;、转换&#xff08;Transform&#xff09;和加载&#xff08;Load&#xff09;过程。提供了一个简洁直观的界面&#xff0c;以便用户可以在不同的数据源之间轻松地进行数据迁移和转换。…...

论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)

笔记整理&#xff1a;刘治强&#xff0c;浙江大学硕士生&#xff0c;研究方向为知识图谱表示学习&#xff0c;大语言模型 论文链接&#xff1a;http://arxiv.org/abs/2407.16127 发表会议&#xff1a;ISWC 2024 1. 动机 传统的知识图谱补全&#xff08;KGC&#xff09;模型通过…...

【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)

骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术&#xff0c;它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton)&#xff1a;由层级结构的骨头组成&#xff0c;类似于人体骨骼蒙皮 (Mesh Skinning)&#xff1a;将模型网格顶点绑定到骨骼上&#xff0c;使骨骼移动…...

深入解析C++中的extern关键字:跨文件共享变量与函数的终极指南

&#x1f680; C extern 关键字深度解析&#xff1a;跨文件编程的终极指南 &#x1f4c5; 更新时间&#xff1a;2025年6月5日 &#x1f3f7;️ 标签&#xff1a;C | extern关键字 | 多文件编程 | 链接与声明 | 现代C 文章目录 前言&#x1f525;一、extern 是什么&#xff1f;&…...

AI,如何重构理解、匹配与决策?

AI 时代&#xff0c;我们如何理解消费&#xff1f; 作者&#xff5c;王彬 封面&#xff5c;Unplash 人们通过信息理解世界。 曾几何时&#xff0c;PC 与移动互联网重塑了人们的购物路径&#xff1a;信息变得唾手可得&#xff0c;商品决策变得高度依赖内容。 但 AI 时代的来…...

深度学习习题2

1.如果增加神经网络的宽度&#xff0c;精确度会增加到一个特定阈值后&#xff0c;便开始降低。造成这一现象的可能原因是什么&#xff1f; A、即使增加卷积核的数量&#xff0c;只有少部分的核会被用作预测 B、当卷积核数量增加时&#xff0c;神经网络的预测能力会降低 C、当卷…...

iview框架主题色的应用

1.下载 less要使用3.0.0以下的版本 npm install less2.7.3 npm install less-loader4.0.52./src/config/theme.js文件 module.exports {yellow: {theme-color: #FDCE04},blue: {theme-color: #547CE7} }在sass中使用theme配置的颜色主题&#xff0c;无需引入&#xff0c;直接可…...

nnUNet V2修改网络——暴力替换网络为UNet++

更换前,要用nnUNet V2跑通所用数据集,证明nnUNet V2、数据集、运行环境等没有问题 阅读nnU-Net V2 的 U-Net结构,初步了解要修改的网络,知己知彼,修改起来才能游刃有余。 U-Net存在两个局限,一是网络的最佳深度因应用场景而异,这取决于任务的难度和可用于训练的标注数…...