当前位置: 首页 > news >正文

Python 机器学习入门之逻辑回归

系列文章目录

第一章 Python 机器学习入门之线性回归
第一章 Python 机器学习入门之梯度下降法
第一章 Python 机器学习入门之牛顿法
第二章 Python 机器学习入门之逻辑回归

逻辑回归

  • 系列文章目录
  • 前言
  • 一、逻辑回归简介
  • 二、逻辑回归推导
    • 1、问题
    • 2、Sigmoid函数
    • 3、目标函数
      • 3.1 让步比
      • 3.2 极大似然估计
      • 3.3 推导
    • 4、代价函数
    • 5、最大化似然函数
  • 三、逻辑回归实现
    • 结果展示

前言

第二次实验开始了,内容是逻辑回归,听起来像是线性回归的兄弟,然而仔细查阅后发现逻辑回归其实是一种分类算法;

我们知道回归算法的结果建立在连续的数据上,分类算法的结果建立在离散的数据上;因此逻辑回归本质上是一种分类算法,那问题就来了,一个分类算法为啥叫回归呢?
在这里插入图片描述

一、逻辑回归简介

百科定义:
logistic回归又称logistic回归分析,是一种广义的线性回归分析模型,常用于数据挖掘,疾病自动诊断,经济预测等领域。

简单来说,逻辑回归还是建立在我们之前学习的线性回归模型基础上,使用回归的方法来实现分类的目的;就好像同在一个专业学习,有些人学习计算机是为了成为一个优秀的程序员,有些人学计算机是为了挑选出优秀的程序员,结果不一样但在过程中是有很多的相似之处的。

二、逻辑回归推导

1、问题

假设你是一个大学系的管理员,你想根据两个考试的结果确定每个申请人的录取机会。您可以将以前申请者的历史数据用作逻辑回归的培训集。对于每个培训示例,您都有申请人的两次考试成绩和录取决定。为了实现这一点,我们将建立一个分类模型,根据考试成绩估计入学概率。(取自吴恩达机器学习中文版课后题)

先来分析一下,如果我们现在使用线性回归模型来分析该该题,我们最后得出的结论应该是根据考试成绩来预测入学成绩,但是现在结果需要我们来判断是否能成功入学,那我们就在此基础上对之前的入学成绩设定阈值,根据该阈值对结果进行分类来选择是否录取;

但是线性回归模型往往是一条斜线,如何满足结果不是0就是1呢?因此我们引入了Sigmoid函数。

2、Sigmoid函数

先看一下线性回归模型假设函数
在这里插入图片描述
sigmoid函数公式如下
在这里插入图片描述
将线性回归模型的预测值视为上式的自变量z,可得出下图结果
在这里插入图片描述
然而上图结果仍然不是我们真正需要的结果,我们需要的是一个二元离散模型,结果非1即0,因此我们还需处理一下,根据与阈值的差值判断结果
blog.csdnimg.cn/cc9d8f8ac08e47b98b2d5b5d49bf941e.png)
当y ̂ ==0.5时,我们根据实际情况来定;同时上面的阈值是我们手动设置的(并不一定需要0.5),依情况而定,这也是逻辑回归模型的优势之一

3、目标函数

在上面的sigmiod函数上我们建立了逻辑回归的假设函数,我们想要得到它的目标函数,首先得知道自变量X和结果变量y之间的关系,因此我们引入两个概念让步比极大似然估计

3.1 让步比

让步比可以理解成有利于某一特定事件的概率,如下
在这里插入图片描述

3.2 极大似然估计

思想:如果一个事件发生了,那么发生这个事件的概率就是最大的;对于样本i,其类别为
y ̂ ∈(0,1),对于样本i,可以把h(Xi)看成是一种概率;yi对应是1时,概率是h(Xi)(即Xi属于1的概率,即p(Y=1|X));yi对应是0时,概率是1-h(Xi)(Xi属于0的概率,即p(Y=0|X)

已知下式
在这里插入图片描述
在这里使用极大似然估计做一个假设,假设y ̂ 为样本x为正例的概率,那么1-y ̂ 为样本x为负例的概率

在此基础上我们可以将让步比的对数形式转成特征值相关式子;
在这里插入图片描述
然而我们更想要的是预测值和它发生的概率之间的关系,即让步比之间的逆形式
在这里插入图片描述

3.3 推导

已知样本X结果分类的概率
在这里插入图片描述
将上式联系得y的概念分布函数
在这里插入图片描述
通过y的概率分布函数表达式即可得似然函数为(m为样本数量)
在这里插入图片描述
通过似然函数得到对数似然函数即目标函数
在这里插入图片描述

4、代价函数

对于二分类问题,分别考虑y=1和y=0的情况
在这里插入图片描述

5、最大化似然函数

最大似然估计是似然函数最初也是最自然的应用,似然函数取得最大值表示相应的参数能够使得统计模型最为合理
可以使用梯度上升法和牛顿法两种优化方法,这里说一下梯度上升法,本质和之前的梯度下降原理一一样,展开一阶梯度来求最优解;先求目标函数对参数w的偏导

在这里插入图片描述
因此逻辑回归模型的梯度下降函数如下,wj代表第j个模型参数
在这里插入图片描述

三、逻辑回归实现

结果展示

在这里插入图片描述

相关文章:

Python 机器学习入门之逻辑回归

系列文章目录 第一章 Python 机器学习入门之线性回归 第一章 Python 机器学习入门之梯度下降法 第一章 Python 机器学习入门之牛顿法 第二章 Python 机器学习入门之逻辑回归 逻辑回归 系列文章目录前言一、逻辑回归简介二、逻辑回归推导1、问题2、Sigmoid函数3、目标函数3.1 让…...

现货白银赚钱有风险吗?

跟现货黄金一样,现货白银市场是一个公平公正的市场,即使是中小投资者,也能拥有平等的获利机会,同样可以借助平台所给予的资金杠杆,实现个人财富的快速增值。 很多人都是冲着现货白银的财富效应而进入这个市场&#xff…...

Debian衍生桌面项目SpiralLinux12.231001发布

SpiralLinux 是一个从 Debian 衍生出来的桌面项目,其重点是在所有主要桌面环境中实现简洁性和开箱即用的可用性。 spiral Linux 是为刚接触 Linux 世界的人们量身定制的发行版。这是 GeckoLinux 开发人员的创意,他更喜欢保持匿名。尽管他不愿透露姓名&a…...

元宇宙在技术大爆炸时代迎来链游新世界

元宇宙是一个完全虚拟的世界,人们可以在其中互动,就像在现实世界中一样。 随着元宇宙概念不断的被深化,目前许多用户群体已经注意到并加入元宇宙领域。而元宇宙比较火的场景有社交、游戏、虚拟会议等,在许多方面,游戏一…...

9中间件-Redis、MQ---进阶

mq进阶 RabbitMQ 怎么避免消息丢失? 把消息持久化磁盘,保证服务器重启消息不丢失。 每个集群中至少有一个物理磁盘,保证消息落入磁盘。#RabbitMQ 的消息是怎么发送的? 首先客户端必须连接到 RabbitMQ 服务器才能发布和消费消息&…...

JVM(Java Virtual Machine)内存模型篇

前言 本文是JVM系列的内存模型篇,参考资料为《深入理解Java虚拟机》,本文章将会以HotSpot 虚拟机为介绍基础。 1.JVM简单介绍 Java Virtual Machine是运行Java程序的基础,JVM基于C、C实现,JVM有很多种类,但是这些虚…...

对地址解析协议ARP进一步探讨

之前在讨论MAC地址和IP地址时,顺便对ARP协议做了初步的总结 (计网第三章(数据链路层)(四)(MAC地址和IP地址、ARP协议、集线器和交换机)),但是当时对ARP请求的…...

java:java.util.StringTokenizer实现字符串切割

java:java.util.StringTokenizer实现字符串切割 1 前言 java.util工具包提供了字符串切割的工具类StringTokenizer,Spring等常见框架的字符串工具类(如Spring的StringUtils),常见此类使用。 例如Spring的StringUtil…...

IPV6 ND协议--源码解析【根源分析】

ND协议介绍 ND介绍请阅读上一篇文章:IPv6知识 - ND协议【一文通透】11.NDP协议分析与实践_router solicitation报文中不携带source link-layer address-CSDN博客 ND协议定义了5种ICMPv6报文类型,如下表所示: NS/NA报文主要用于地址解析RS/…...

Python学习笔记——存储容器

食用说明:本笔记适用于有一定编程基础的伙伴们。希望有助于各位! 列表 列表类似数组,其中可以包含不同类型的元素,写法如下: list1 [Google, Runoob, 1997, 2000] list2 [1, 2, 3, 4, 5 ] list3 ["a", …...

Android DI框架-Hilt

到底该如何理解<依赖注入> 模版代码&#xff1a;食之无味&#xff0c;弃之可惜 public class MainActivity extends Activity {Overrideprotected void onCreate(Bundle savedInstanceState) {super.onCreate(savedInstanceState);TextView mTextView(TextView) findVi…...

基于寄生捕食优化的BP神经网络(分类应用) - 附代码

基于寄生捕食优化的BP神经网络&#xff08;分类应用&#xff09; - 附代码 文章目录 基于寄生捕食优化的BP神经网络&#xff08;分类应用&#xff09; - 附代码1.鸢尾花iris数据介绍2.数据集整理3.寄生捕食优化BP神经网络3.1 BP神经网络参数设置3.2 寄生捕食算法应用 4.测试结果…...

【Java常见的几种设计模式】

Java常见的几种设计模式 1. 单例模式&#xff08;Singleton Pattern&#xff09;2. 工厂模式&#xff08;Factory pattern&#xff09;3. 抽象工厂模式&#xff08;Abstract Factory Pattern&#xff09;4. 建造者模式&#xff08;Builder Pattern&#xff09;5. 原型模式&…...

jupyter崩溃进不去,报错module ‘mistune‘ has no attribute ‘BlockGrammar‘

是python包引起的问题 [E 2023-10-14 08:40:25.414 ServerApp] Uncaught exception GET /api/nbconvert?1697244025327 (127.0.0.1) HTTPServerRequest(protocol‘http’, host‘localhost:8090’, method‘GET’, uri‘/api/nbconvert?1697244025327’, version‘HTTP/1.1’…...

windows terminal鼠标右键打开

如果在官网上下载的是zip文件的 需要在注册表修改鼠标右键才能出来 注册表修改如下&#xff1a; 1.先windowsR&#xff0c;在命令框中输入regedit 打开注册表 2.在路径’计算机\HKEY_CLASSES_ROOT\directory\background\shell’下新建一个wt&#xff0c;wt下新建commond 这里…...

HTML5播放 M3U8的hls流地址

在HTML5页面上播放M3U8的hls流地址 <!DOCTYPE html> <html> <head> <meta charset"UTF-8"> <title>视频播放</title> <script src"https://cdn.jsdelivr.net/npm/hls.jslatest"></script> &…...

leetcode:101.对称二叉树

借用二叉树是否相同的代码改动左右孩子相等对应关系&#xff0c;即为是否对称。 /*** Definition for a binary tree node.* struct TreeNode {* int val;* struct TreeNode *left;* struct TreeNode *right;* };*/bool isSameTree(struct TreeNode* p, struct Tr…...

UI自动化的适用场景,怎么做?

经常有人会问&#xff0c;什么样的项目才适合进行UI自动化测试呢&#xff1f;UI自动化测试相当于模拟手工测试&#xff0c;通过程序去操作页面上的控件。而在实际测试过程中&#xff0c;经常会遇到无法找到控件&#xff0c;或者因控件定义变更而带来的维护成本等问题。 哪些场…...

SpringFramewrok (1)

1、框架的概念与理解 在现实生活中&#xff0c;框架可以比喻为我们搭建房子的框架。 在框架的基础上&#xff0c;我们可以专注于我们自己的工作&#xff0c;而不用在意这些底层工作如何实现。 框架的优点包括以下几点&#xff1a; 1. 提高开发效率&#xff1a;框架提供了许多…...

电商独立站小程序开发方案

随着移动互联网的迅速发展&#xff0c;电商行业也逐渐向小程序平台转移。开发一款电商小程序对于拓展销售渠道、提高用户体验、增加用户忠诚度等方面都有着重要的意义。本文将围绕电商小程序的开发背景、需求分析、技术选型、开发流程、风险控制、商业模式和市场前景等方面进行…...

【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型

摘要 拍照搜题系统采用“三层管道&#xff08;多模态 OCR → 语义检索 → 答案渲染&#xff09;、两级检索&#xff08;倒排 BM25 向量 HNSW&#xff09;并以大语言模型兜底”的整体框架&#xff1a; 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后&#xff0c;分别用…...

零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?

一、核心优势&#xff1a;专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发&#xff0c;是一款收费低廉但功能全面的Windows NAS工具&#xff0c;主打“无学习成本部署” 。与其他NAS软件相比&#xff0c;其优势在于&#xff1a; 无需硬件改造&#xff1a;将任意W…...

深入剖析AI大模型:大模型时代的 Prompt 工程全解析

今天聊的内容&#xff0c;我认为是AI开发里面非常重要的内容。它在AI开发里无处不在&#xff0c;当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗"&#xff0c;或者让翻译模型 "将这段合同翻译成商务日语" 时&#xff0c;输入的这句话就是 Prompt。…...

进程地址空间(比特课总结)

一、进程地址空间 1. 环境变量 1 &#xff09;⽤户级环境变量与系统级环境变量 全局属性&#xff1a;环境变量具有全局属性&#xff0c;会被⼦进程继承。例如当bash启动⼦进程时&#xff0c;环 境变量会⾃动传递给⼦进程。 本地变量限制&#xff1a;本地变量只在当前进程(ba…...

.Net框架,除了EF还有很多很多......

文章目录 1. 引言2. Dapper2.1 概述与设计原理2.2 核心功能与代码示例基本查询多映射查询存储过程调用 2.3 性能优化原理2.4 适用场景 3. NHibernate3.1 概述与架构设计3.2 映射配置示例Fluent映射XML映射 3.3 查询示例HQL查询Criteria APILINQ提供程序 3.4 高级特性3.5 适用场…...

可靠性+灵活性:电力载波技术在楼宇自控中的核心价值

可靠性灵活性&#xff1a;电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中&#xff0c;电力载波技术&#xff08;PLC&#xff09;凭借其独特的优势&#xff0c;正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据&#xff0c;无需额外布…...

解锁数据库简洁之道:FastAPI与SQLModel实战指南

在构建现代Web应用程序时&#xff0c;与数据库的交互无疑是核心环节。虽然传统的数据库操作方式&#xff08;如直接编写SQL语句与psycopg2交互&#xff09;赋予了我们精细的控制权&#xff0c;但在面对日益复杂的业务逻辑和快速迭代的需求时&#xff0c;这种方式的开发效率和可…...

使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装

以下是基于 vant-ui&#xff08;适配 Vue2 版本 &#xff09;实现截图中照片上传预览、删除功能&#xff0c;并封装成可复用组件的完整代码&#xff0c;包含样式和逻辑实现&#xff0c;可直接在 Vue2 项目中使用&#xff1a; 1. 封装的图片上传组件 ImageUploader.vue <te…...

【决胜公务员考试】求职OMG——见面课测验1

2025最新版&#xff01;&#xff01;&#xff01;6.8截至答题&#xff0c;大家注意呀&#xff01; 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:&#xff08; B &#xff09; A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...

深度学习习题2

1.如果增加神经网络的宽度&#xff0c;精确度会增加到一个特定阈值后&#xff0c;便开始降低。造成这一现象的可能原因是什么&#xff1f; A、即使增加卷积核的数量&#xff0c;只有少部分的核会被用作预测 B、当卷积核数量增加时&#xff0c;神经网络的预测能力会降低 C、当卷…...