当前位置: 首页 > news >正文

卡尔曼滤波原理及代码实战

目录

    • 简介
    • 1.原理介绍
      • 场景假设
      • (1).下一时刻的状态
      • (2).增加系统的内部控制
      • (3).考虑运动系统外部的影响
      • (4).后验估计:预测结果与观测结果的融合
        • 卡尔曼增益K
    • 2.卡尔曼滤波计算过程
      • (1).预测阶段(先验估计阶段)
      • (2).更新阶段(后验估计阶段)
    • 3.代码举例

简介

我们可以将卡尔曼滤波看做一种运动模型,它可以在任何含有不确定信息的动态系统中,对系统的下一步走向做出一定的预测,无论是在单目标还是多目标领域都是很常用的一种算法。它最大的优点就是采用递归的方式来解决线性滤波的问题,只需要当前的观测值和前一个周期的预测值就能够进行状态估计。

1.原理介绍

场景假设

假设有一个小车在路上行驶,小车的初始位置和速度用一个状态向量表示:
x^t=[position,velocity]简写为x^t=[pt,vt]\hat x_t=[position,velocity]\\ 简写为\\ \hat x_t=[p_t,v_t] x^t=[position,velocity]简写为x^t=[pt,vt]
因为用两个变量表示了状态向量,所以系统中这两个变量的不确定性和相关性可以用一个协方差矩阵来表示:
Pt=[∑pp∑pv∑vp∑vv]P_t=\begin{bmatrix} \sum_{pp}\quad\sum_{pv}\\ \sum_{vp}\quad\sum_{vv} \end{bmatrix} Pt=[pppvvpvv]
比如前一时刻的速度Vt−1V_{t-1}Vt1和下一时刻的速度VtV_tVt存在着某种关联,不可能从0突变成光速;

比如前一时刻的速度Pt−1P_{t-1}Pt1和下一时刻的速度PtP_tPt也存在着某种关联,不可能从我国某地突然变成火星某地。

(1).下一时刻的状态

当小车在做匀速运动时,小车下一时刻的位置和速度如下:
{pt=pt−1+vt−1Δtvt=vt−1\begin{cases} p_t=p_{t-1}+v_{t-1}\Delta t\\ v_t=v_{t-1} \end{cases} {pt=pt1+vt1Δtvt=vt1

矩阵形式为:
[ptvt]=[1Δt01][pt−1vt−1]=Ft[pt−1vt−1]\begin{bmatrix} p_t\\ v_{t} \end{bmatrix}= \begin{bmatrix} 1\quad\Delta t\\ 0\quad1 \end{bmatrix} \begin{bmatrix} p_{t-1}\\ v_{t-1} \end{bmatrix}=F_t\begin{bmatrix} p_{t-1}\\ v_{t-1} \end{bmatrix}[ptvt]=[1Δt01][pt1vt1]=Ft[pt1vt1]

即:x^t=[1Δt01]x^t−1=Ftx^t−1\hat x_t=\begin{bmatrix} 1\quad\Delta t\\ 0\quad1 \end{bmatrix}\hat x_{t-1}=F_t\hat x_{t-1} x^t=[1Δt01]x^t1=Ftx^t1
状态转移矩阵为,表示小车状态随时间的变化:
Ft=[1Δt01]F_t=\begin{bmatrix}1\quad\Delta t\\0\quad1\end{bmatrix} Ft=[1Δt01]
系统的不确定性和相关性用PtP_tPt表示,而下一时刻的协方差矩阵可表示为(T表示矩阵的转置):
Pt=FtPt−1FtTP_t=F_tP_{t-1}F^T_t Pt=FtPt1FtT

(2).增加系统的内部控制

如果对小车进行控制,比如加速和减速,假设它的加速度为ata_tat,则小车下一时刻的位置和速度是:

{pt=pt−1+vt−1Δt+12atΔt2vt=vt−1+atΔt\begin{cases} p_t=p_{t-1}+v_{t-1}\Delta t+\frac{1}{2}a_t\Delta t^2\\ v_t=v_{t-1}+a_t\Delta t \end{cases} {pt=pt1+vt1Δt+21atΔt2vt=vt1+atΔt
矩阵形式为:
[ptvt]=[1Δt01][pt−1vt−1]+[Δt22Δt]at=Ft[pt−1vt−1]+Btut\begin{bmatrix} p_t\\ v_{t} \end{bmatrix}= \begin{bmatrix} 1\quad\Delta t\\ 0\quad1 \end{bmatrix} \begin{bmatrix} p_{t-1}\\ v_{t-1}\end{bmatrix}+\begin{bmatrix}\frac{\Delta t^2}{2}\\\Delta t\end{bmatrix}a_t= F_t\begin{bmatrix} p_{t-1}\\ v_{t-1} \end{bmatrix}+B_t u_t [ptvt]=[1Δt01][pt1vt1]+[2Δt2Δt]at=Ft[pt1vt1]+Btut
状态控制矩阵Bt=[Δt22Δt]B_t=\begin{bmatrix} \frac{\Delta t^2}{2}\\ \Delta t \end{bmatrix}Bt=[2Δt2Δt],表明加速度如何改变小车的状态;

状态控制向量utu_tut,表明控制的力度大小和方向。

(3).考虑运动系统外部的影响

小车运动时有很多因素可以对它的位置速度造成影响,比如风俗,路况等,假设外部对小车造成的系统状态误差为wtw_twt,并且它服从高斯分布wtN(0,Qt)w_t~N(0,Q_t)wt N(0,Qt),代入之前的小车运行控制方程,可以得到最终完整的状态预测方程:
x^t=Ftx^t−1+Btut+wtPt=FtPt−1FtT+Qt\hat x_t=F_t\hat x_{t-1}+B_tu_t+w_t\\ P_t=F_tP_{t-1}F^T_t+Q_t x^t=Ftx^t1+Btut+wtPt=FtPt1FtT+Qt
除了小车运动的场景,其他物体的状态变化

一般情况下,假设wtw_twt为0即可,将上述公式规范化得到:
x=Fx+BuP=FPFT+Qx=Fx+Bu\\ P=FPF^T+Q x=Fx+BuP=FPFT+Q

(4).后验估计:预测结果与观测结果的融合

在等3步中我们预测出了小车的下一时刻的运动状态,将它的结果称为预测结果,也称为先验估计;不过实际中,汽车上会有里程表、GPS等设备也会提供小车下一时刻的运动状态,称其结果为观测结果

在实际情况中,预测结果和观测结果都有一定的误差,它们的结果都不一定十分准确,而卡尔曼滤波最重要的作用就是将两者融合,充分利用两者的不确定性得到更加准确的结果,称之为后验估计

卡尔曼增益K

融合阶段需要用到一个关键的系数卡尔曼增益K,其公式如下(推导过程略):
K=PHT(HPHT)+RK=\frac{PH^T}{(HPH^T)+R} K=(HPHT)+RPHT
P表示变量的不确定性和相关性的协方差矩阵;

R表示传感器观测结果的噪声的协方差矩阵,因为观测值的结果也不一定完美;

H表示预测值和观测值之间的某种关系矩阵,因为它们的结果存在的一定交合;

整体来说,卡尔曼增益表示对观测结果借鉴的程度,相当于一个权重项,让算法知道怎么利用观测与预测进行估计,目的就是让最优估计值的方差更小,是卡尔曼滤波的核心。

2.卡尔曼滤波计算过程

卡尔曼滤波的计算一般分为两步:预测阶段更新阶段

(1).预测阶段(先验估计阶段)

x=Fx+BuP=FPFT+Qx=Fx+Bu\\ P=FPF^T+Q x=Fx+BuP=FPFT+Q

(2).更新阶段(后验估计阶段)

K=PHT((HPHT)+R)−1x=x+(K(z−(Hx)))P=(I−(KH))PK=PH^T((HPH^T)+R)^{-1}\\ x=x+(K(z-(Hx)))\\ P=(I-(KH))P K=PHT((HPHT)+R)1x=x+(K(z(Hx)))P=(I(KH))P

x表示系统状态;

z表示传感器的观测结果;

F表示状态转移矩阵;

B表示状态控制矩阵;

u表示状态控制向量;

H表示预测和观测的关系矩阵;

P表示变量的不确定性和相关性的协方差矩阵;

R表示传感器观测结果的噪声的协方差矩阵;

Q表示不确定因素对系统预测结果造成误差的协方差矩阵。

QR根据实际情况来定,不断调优根据效果选择一个最优解;

在实际计算中,我们需要关注的是系统的状态x,和它的误差协方差矩阵P卡尔曼增益K

3.代码举例

相关文章:

卡尔曼滤波原理及代码实战

目录简介1.原理介绍场景假设(1).下一时刻的状态(2).增加系统的内部控制(3).考虑运动系统外部的影响(4).后验估计:预测结果与观测结果的融合卡尔曼增益K2.卡尔曼滤波计算过程(1).预测阶段(先验估计阶段)(2).更新阶段(后验估计阶段&…...

Jmeter使用教程

目录一,简介二,Jmeter安装1,下载2,安装三,创建测试1,创建线程组2,创建HTTP请求默认值3,创建HTTP请求4,添加HTTP请求头5,添加断言6,添加查看结果树…...

论文笔记|固定效应的解释和使用

DeHaan E. Using and interpreting fixed effects models[J]. Available at SSRN 3699777, 2021. 虽然固定效应在金融经济学研究中无处不在,但许多研究人员对作用的了解有限。这篇论文解释了固定效应如何消除遗漏变量偏差并影响标准误差,并讨论了使用固…...

数据集市与数据仓库的区别

数据仓库是企业级的,能为整个企业各个部门的运作提供决策支持;而数据集市则是部门级的,一般只能为某个局部范围内的管理人员服务,因此也称之为部门级数据仓库。 1、两种数据集市结构 数据集市按数据的来源分为以下两种 &#x…...

Golang学习Day3

😋 大家好,我是YAy_17,是一枚爱好网安的小白。 本人水平有限,欢迎各位师傅指点,欢迎关注 😁,一起学习 💗 ,一起进步 ⭐ 。 ⭐ 此后如竟没有炬火,我便是唯一的…...

Python并发编程-事件驱动模型

一、事件驱动模型介绍 1、传统的编程模式 例如:线性模式大致流程 开始--->代码块A--->代码块B--->代码块C--->代码块D--->......---&…...

构建系统发育树简述

1. 要点 系统发育树代表了关于一组生物之间的进化关系的假设。可以使用物种或其他群体的形态学(体型)、生化、行为或分子特征来构建系统发育树。在构建树时,我们根据共享的派生特征(不同于该组祖先的特征)将物种组织成…...

这款 Python 调试神器推荐收藏

大家好,对于每个程序开发者来说,调试几乎是必备技能。 代码写到一半卡住了,不知道这个函数执行完的返回结果是怎样的?调试一下看看 代码运行到一半报错了,什么情况?怎么跟预期的不一样?调试一…...

金三银四吃透这份微服务笔记,面试保准涨10K+

很多人对于微服务技术也都有着一些疑虑,比如: 微服务这技术虽然面试的时候总有人提,但作为一个开发,是不是和我关系不大?那不都是架构师的事吗?微服务不都是大厂在玩吗?我们这个业务体量用得着…...

构建matter over Thread的演示系统-efr32

文章目录1. 简介2. 构建测试系统2.1设置 Matter Hub(Raspberry Pi)2.2 烧录Open Thread RCP固件2.3 烧录待测试的matter设备3. 配网和测试:3.1 使用mattertool建立Thread网络3.2 使用mattertool配置设备入网3.3 使用mattertool控制matter设备3.4 查看节点的Node ID等…...

【一天一门编程语言】Matlab 语言程序设计极简教程

Matlab 语言程序设计极简教程 用 markdown 格式输出答案。 不少于3000字。细分到2级目录。 目录 Matlab 语言程序设计极简教程 简介Matlab 工作空间Matlab 基本数据类型Matlab 语句和表达式Matlab 函数和程序Matlab 图形界面程序设计Matlab 应用实例 简介 Matlab是一种编…...

看似平平无奇的00后,居然一跃上岸字节,表示真的卷不过......

又到了一年一度的求职旺季金!三!银!四!在找工作的时候都必须要经历面试这个环节。在这里我想分享一下自己上岸字节的面试经验,过程还挺曲折的,但是还好成功上岸了。大家可以参考一下! 0821测评 …...

BZOJ2142 礼物

题目描述 一年一度的圣诞节快要来到了。每年的圣诞节小E都会收到许多礼物,当然他也会送出许多礼物。不同的人物在小E 心目中的重要性不同,在小E心中分量越重的人,收到的礼物会越多。小E从商店中购买了n件礼物,打算送给m个人 &…...

MySQL高级第一讲

目录 一、MySQL高级01 1.1 索引 1.1.1 索引概述 1.1.2 索引特点 1.1.3 索引结构 1.1.4 BTREE结构(B树) 1.1.5 BTREE结构(B树) 1.1.6 索引分类 1.1.7 索引语法 1.1.8 索引设计原则 1.2 视图 1.2.1 视图概述 1.2.2 创建或修改视图 1.3 存储过程和函数 1.3.1 存储过…...

前端面试常用内容——基础积累

1.清除浮动的方式有哪些? 高度塌陷:当所有的子元素浮动的时候,且父元素没有设置高度,这时候父元素就会产生高度塌陷。 清除浮动的方式: 1.1 给父元素单独定义高度 优点: 快速简单,代码少 缺…...

跟着《代码随想录》刷题(三)——哈希表

3.1 哈希表理论基础 哈希表理论基础 3.2 有效的字母异位词 242.有效的字母异位词 C bool isAnagram(char * s, char * t){int array[26] {0};int i 0;while (s[i]) {// 并不需要记住字符的ASCII码,只需要求出一个相对数值就可以了array[s[i] - a];i;}i 0;whi…...

HTML - 扫盲

文章目录1. 前言2. HTML2.1 下载 vscode3 HTML 常见标签3.1 注释标签3.2 标题标签3.3 段落标签3.4 换行标签3.5 格式化标签1. 加粗2. 倾斜3. 下划线3.6 图片标签3.7 超链接标签3.8 表格标签3.9 列表标签4. 表单标签4.1 from 标签4.2 input 标签4.3 select 标签4.4 textarea标签…...

【系统分析师之路】2022上案例分析历年真题

【系统分析师之路】2022上案例分析历年真题 【系统分析师之路】2022上案例分析历年真题【系统分析师之路】2022上案例分析历年真题2022上案例分析历年真题第一题(25分)2022上案例分析历年真题第二题(25分)2022上案例分析历年真题第…...

Python编程规范

Python编程规范 当今Python编程社区有许多关于编程规范的约定和惯例。以下是一些常见的Python编程规范: 1.使用有意义的命名 使用有意义的命名可以使代码更加清晰、易读、易维护。变量、函数、类和模块的命名应该能够明确传达其用途,而不是使用无意义…...

【Java】Spring Boot项目的创建和使用

文章目录SpringBoot的创建和使用1. 什么是Spring Boot?为什么要学Spring Boot?2. Spring Boot项目的优点3. Spring Boot 项目的创建3.1 使用idea创建3.2 接下来创建Spring Boot项目4. 项目目录介绍和运行4.1 运行项目4.2 输出内容5. 总结SpringBoot的创建…...

基于算法竞赛的c++编程(28)结构体的进阶应用

结构体的嵌套与复杂数据组织 在C中,结构体可以嵌套使用,形成更复杂的数据结构。例如,可以通过嵌套结构体描述多层级数据关系: struct Address {string city;string street;int zipCode; };struct Employee {string name;int id;…...

python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)

更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...

ardupilot 开发环境eclipse 中import 缺少C++

目录 文章目录 目录摘要1.修复过程摘要 本节主要解决ardupilot 开发环境eclipse 中import 缺少C++,无法导入ardupilot代码,会引起查看不方便的问题。如下图所示 1.修复过程 0.安装ubuntu 软件中自带的eclipse 1.打开eclipse—Help—install new software 2.在 Work with中…...

【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)

升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点,但无自动故障转移能力,Master宕机后需人工切换,期间消息可能无法读取。Slave仅存储数据,无法主动升级为Master响应请求&#xff…...

python报错No module named ‘tensorflow.keras‘

是由于不同版本的tensorflow下的keras所在的路径不同,结合所安装的tensorflow的目录结构修改from语句即可。 原语句: from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后: from tensorflow.python.keras.lay…...

用机器学习破解新能源领域的“弃风”难题

音乐发烧友深有体会,玩音乐的本质就是玩电网。火电声音偏暖,水电偏冷,风电偏空旷。至于太阳能发的电,则略显朦胧和单薄。 不知你是否有感觉,近两年家里的音响声音越来越冷,听起来越来越单薄? —…...

Docker 本地安装 mysql 数据库

Docker: Accelerated Container Application Development 下载对应操作系统版本的 docker ;并安装。 基础操作不再赘述。 打开 macOS 终端,开始 docker 安装mysql之旅 第一步 docker search mysql 》〉docker search mysql NAME DE…...

面向无人机海岸带生态系统监测的语义分割基准数据集

描述:海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而,目前该领域仍面临一个挑战,即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...

计算机基础知识解析:从应用到架构的全面拆解

目录 前言 1、 计算机的应用领域:无处不在的数字助手 2、 计算机的进化史:从算盘到量子计算 3、计算机的分类:不止 “台式机和笔记本” 4、计算机的组件:硬件与软件的协同 4.1 硬件:五大核心部件 4.2 软件&#…...

安卓基础(Java 和 Gradle 版本)

1. 设置项目的 JDK 版本 方法1:通过 Project Structure File → Project Structure... (或按 CtrlAltShiftS) 左侧选择 SDK Location 在 Gradle Settings 部分,设置 Gradle JDK 方法2:通过 Settings File → Settings... (或 CtrlAltS)…...