Hadoop3教程(十六):MapReduce中的OutputFormat
文章目录
- (105)OutputFormat概述
- (106)自定义OutputFormat案例需求分析
- (107/108)自定义OutputFormat案例实现
- 自定义Mapper
- 自定义Reducer
- 自定义OutputFormat
- Driver
- 参考文献
(105)OutputFormat概述
我们之前讲过了Map阶段的InputFormat,对应的,Reduce阶段也有自己的OutputFormat。
Reducer在执行完reduce()之后,接下来就会通过OutputFormat来将处理结果输出至外界环境。
Hadoop里默认使用的是TextOutputFormat,即将reduce()的处理结果,按行输出到文件。
而OutputFormat是MapReduce输出的基类,所有实现了MR输出的程序,都必须实现OutputFormat接口。
OutputFormat有几种官方自带的实现类(具体功能就不展开了):
- NullOutputFormat
- FileOutputFormat
- MapFileOutputFormat
- SequenceFileOutputFormat
- TextOutputFormat(默认)
- FilterOutputFormat
- LazyOutputFormat
- DBOutputFormat
OutputFormat类的核心方法:public abstract RecordWriter<K,V> getRecordWriter(...)
最终结果怎么写,以什么形式写,写到哪儿,等等这些,都是在getRecordWriter()里控制的。
当然,这些自带的实现类在日常的生产中肯定是不足以满足各种情况的,所以多数情况下,我们会实现自定义的OutputFormat类。
自定义OutputFormat实现类需要:
- 继承FileOutputFormat;
- 改写RecordWriter,具体改写输出数据的方法write()
(106)自定义OutputFormat案例需求分析
需求:输入是一个日志文件,即log.txt,里面是罗列了一些访问过的网站,现在需要把其中包含atguigu的网站输出到a.log,不包含atguigu的网站输出到b.log。
输入数据形如:
http://www.baidu.com
http://www.atguibu.com
...
我们需要自定义一个OutputFormat类,即创建一个类LogRecordWriter继承RecordWriter,然后创建两个文件输出流,一个是atguiguOut,一个是otherOut。如果输入数据包含atguigu,就输出到atguiguOut,反之则输出到otherOut流。
最后还需要在驱动类里注册一下:
job.setOutputFormatClass(LogOutputFormat.class);
附注:
其实这个需求从直观上来讲,是可以通过分区来实现类似功能的,但是很遗憾,分区的话无法控制输出文件的名字,所以没法严格符合需求。
(107/108)自定义OutputFormat案例实现
这里直接复制了教程里的代码,来介绍一下,如何针对上一小节提出的需求,自定义OutputFormat。
自定义Mapper
首先需要创建一个自定义的Mapper类,如class LogMapper extends Mapper<LongWritable, Text, Text, NullWritable>
package com.atguigu.mapreduce.outputformat;import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;import java.io.IOException;public class LogMapper extends Mapper<LongWritable, Text,Text, NullWritable> {@Overrideprotected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {//不做任何处理,直接写出一行log数据context.write(value,NullWritable.get());}
}
自定义Reducer
然后新建一个自定义Reducer类:
package com.atguigu.mapreduce.outputformat;import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;import java.io.IOException;public class LogReducer extends Reducer<Text, NullWritable,Text, NullWritable> {@Overrideprotected void reduce(Text key, Iterable<NullWritable> values, Context context) throws IOException, InterruptedException {// 防止有相同的数据,迭代写出for (NullWritable value : values) {context.write(key,NullWritable.get());}}
}
自定义OutputFormat
这里是最重要的一步,就是自定义一个OutputFormat类,继承RecordWriter:
- 创建两个文件的输出流:atguiguOut、otherOut;
- 如果输入数据中含有atguigu,则输出至atguiguOut,反之则输出到otherOut;
首先自定义OutputFormat类,重写RecordWriter方法,将我们自定义的LogRecordWriter放进去。
package com.atguigu.mapreduce.outputformat;import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.RecordWriter;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;import java.io.IOException;public class LogOutputFormat extends FileOutputFormat<Text, NullWritable> {@Overridepublic RecordWriter<Text, NullWritable> getRecordWriter(TaskAttemptContext job) throws IOException, InterruptedException {//创建一个自定义的RecordWriter返回LogRecordWriter logRecordWriter = new LogRecordWriter(job);return logRecordWriter;}
}
然后编写LogRecordWriter类,:
package com.atguigu.mapreduce.outputformat;import org.apache.hadoop.fs.FSDataOutputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IOUtils;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.RecordWriter;
import org.apache.hadoop.mapreduce.TaskAttemptContext;import java.io.IOException;public class LogRecordWriter extends RecordWriter<Text, NullWritable> {private FSDataOutputStream atguiguOut;private FSDataOutputStream otherOut;public LogRecordWriter(TaskAttemptContext job) {try {//获取文件系统对象FileSystem fs = FileSystem.get(job.getConfiguration());//用文件系统对象创建两个输出流对应不同的目录atguiguOut = fs.create(new Path("d:/hadoop/atguigu.log"));otherOut = fs.create(new Path("d:/hadoop/other.log"));} catch (IOException e) {e.printStackTrace();}}@Overridepublic void write(Text key, NullWritable value) throws IOException, InterruptedException {String log = key.toString();//根据一行的log数据是否包含atguigu,判断两条输出流输出的内容if (log.contains("atguigu")) {atguiguOut.writeBytes(log + "\n");} else {otherOut.writeBytes(log + "\n");}}@Overridepublic void close(TaskAttemptContext context) throws IOException, InterruptedException {//关流IOUtils.closeStream(atguiguOut);IOUtils.closeStream(otherOut);}
}
Driver
最后编写LogDriver驱动类,把我们前面自定义的的类统统在驱动类里注册上:
package com.atguigu.mapreduce.outputformat;import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;import java.io.IOException;public class LogDriver {public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {Configuration conf = new Configuration();Job job = Job.getInstance(conf);job.setJarByClass(LogDriver.class);job.setMapperClass(LogMapper.class);job.setReducerClass(LogReducer.class);job.setMapOutputKeyClass(Text.class);job.setMapOutputValueClass(NullWritable.class);job.setOutputKeyClass(Text.class);job.setOutputValueClass(NullWritable.class);//设置自定义的outputformatjob.setOutputFormatClass(LogOutputFormat.class);FileInputFormat.setInputPaths(job, new Path("D:\\input"));//虽然我们自定义了outputformat,但是因为我们的outputformat继承自fileoutputformat//而fileoutputformat要输出一个_SUCCESS文件,所以在这还得指定一个输出目录FileOutputFormat.setOutputPath(job, new Path("D:\\logoutput"));boolean b = job.waitForCompletion(true);System.exit(b ? 0 : 1);}
}
至此需求完成。
参考文献
- 【尚硅谷大数据Hadoop教程,hadoop3.x搭建到集群调优,百万播放】
相关文章:
Hadoop3教程(十六):MapReduce中的OutputFormat
文章目录 (105)OutputFormat概述(106)自定义OutputFormat案例需求分析(107/108)自定义OutputFormat案例实现自定义Mapper自定义Reducer自定义OutputFormatDriver 参考文献 (105)Outp…...
通过表查询 sm37 排程运行情况 JOB 数据保存在表TBTCP 和 TBTCO中
sm36 设置排程 sm37 查看排程 se11 查表 Values for TBTCO-STATUS: A - Cancelled F - Completed P - Scheduled R - Active S - Released JOB 数据保存在表TBTCP 和 TBTCO中 参考 https://blog.51cto.com/u_15680210/5757746?articleABtest0 https://answers.sap.co…...
append_ocr_trainf
read_image (Image, D:/图像文件/字符识别/1-1.bmp) access_channel (Image, Image1, 1) * draw_rectangle2 (3600, Row, Column, Phi, Length1, Length2) gen_rectangle2 (Rectangle, 96.0436, 715.9526, 0.0173917050943654, 110.186941, 18.041084) reduce_domain (Image1, …...
小程序原生代码转uniapp
写了一份小程序原生代码,想转为uniapp 再转为其他平台发布 1、在命令行里,运行【 npm install miniprogram-to-uniapp -g 】进行安装,因为这个包是工具,要求全局都能使用&#x…...
云原生微服务 第五章 Spring Cloud Netflix Eureka集成负载均衡组件Ribbon
系列文章目录 第一章 Java线程池技术应用 第二章 CountDownLatch和Semaphone的应用 第三章 Spring Cloud 简介 第四章 Spring Cloud Netflix 之 Eureka 第五章 Spring Cloud Netflix 之 Ribbon 文章目录 系列文章目录[TOC](文章目录) 前言1、负载均衡1.1、服务端负载均衡1.2、…...
七大排序 (9000字详解直接插入排序,希尔排序,选择排序,堆排序,冒泡排序,快速排序,归并排序)
一:排序的概念及引入 1.1 排序的概念 1.1 排序的概念 排序:所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。 稳定性:假定在待排序的记录序列中,存在…...
一、nginx配置
一、nginx配置 配置简介 1)nginx相关目录 工作目录:/etc/nginx 执行文件:/usr/sbin/nginx 日志目录:/var/log/nginx 启动文件:/etc/init.d/nginx web目录:/var/www/html/,首页文件是index.ng…...
win32汇编-LEA指令是将一个内存地址加载到一个寄存器中
LEA (Load Effective Address) 指令是用来将一个内存地址加载到一个寄存器中的指令。 其语法为: lea destination, source 其中,destination 是目标寄存器,source 是一个内存地址(即一个存储器操作数)。 举个例子…...
leetcode做题笔记189. 轮转数组
给定一个整数数组 nums,将数组中的元素向右轮转 k 个位置,其中 k 是非负数。 示例 1: 输入: nums [1,2,3,4,5,6,7], k 3 输出: [5,6,7,1,2,3,4] 解释: 向右轮转 1 步: [7,1,2,3,4,5,6] 向右轮转 2 步: [6,7,1,2,3,4,5] 向右轮转 3 步: [5,6,7,1,2,3,4…...
数据库第七章作业
本篇用于日常记录和分享 第7章作业.xls 题量: 25 满分: 100 一. 单选题(共25题) 1. (单选题)二级封锁协议不能保证消除( )这一不一致现象。 A. 读取脏数据B. 死锁C. 不可重复读D. 丢失修改 我的答案: C :不可重复读; 2. (单…...
使用服务器训练模型的注意事项
一、图像展示 1.1、用VS Code远程连接服务器时,当我们想用matplotlib库来进行图像展示的时候,需要设置DISPLAY变量。 # 用终端工具(XShell)SSH远程服务器,在终端上输入下列语句 # 如果使用了anaconda的虚拟环境&…...
Linux性能优化--性能追踪3:系统级迟缓(prelink)
12.0 概述 本章包含的例子说明了如何用Linux性能工具寻找并修复影响整个系统而不是某个应用程序的性能问题。阅读本章后,你将能够: 追踪是哪一个进程导致了系统速度的降低。用strace调查一个不受CPU限制的进程的性能表现。用strace调查一个应用程序是如…...
SpringBoot2.x简单集成Flowable
环境和版本 window10 java1.8 mysql8 flowable6 springboot 2.7.6 配置 使用IDEA创建一个SpringBoot项目 <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0" xmlns:xsi"http://www.…...
微信小程序一键获取位置
需求 有个表单需要一键获取对应位置 并显示出来效果如下: 点击一键获取获取对应位置 显示在 picker 默认选中 前端 代码如下: <view class"box_7 {{ showChange1? change-style: }}"><view class"box_11"><view class"…...
Linux性能优化--使用性能工具发现问题
9.0 概述 本章主要介绍综合运用之前提出的性能工具来缩小性能问题产生原因的范围。阅读本章后,你将能够: 启动行为异常的系统,使用Linux性能工具追踪行为异常的内核函数或应用程序。启动行为异常的应用程序,使用Linux性能工具追…...
【Proteus仿真】【STM32单片机】路灯控制系统
文章目录 一、功能简介二、软件设计三、实验现象联系作者 一、功能简介 本项目使用Proteus8仿真STM32单片机控制器,使用LCD1602显示模块、人体红外传感器、光线检测模块、路灯继电器控制等。 主要功能: 系统运行后,LCD1602显示时间、工作模…...
Flutter笔记:发布一个Flutter头像模块 easy_avatar
Flutter笔记 发布一个头像Flutter模块 easy_avatar 作者:李俊才 (jcLee95):https://blog.csdn.net/qq_28550263 邮箱 :291148484163.com 本文地址:https://blog.csdn.net/qq_28550263/article/details/1339…...
标准化助推开源发展丨九州未来参编开源领域4项团体标准正式发布
在数字中国及数字经济时代的大背景下,开源逐步成为各行业数字化发展的关键模式。在开源产业迅速发展的同时,如何评估、规范开源治理成为行业极度关注的问题。 近日,中电标2023年第27号团体标准公告正式发布,九州未来作为起草单位…...
ChatGPT对于留学生论文写作有哪些帮助?
2022年11月,OpenAI公司的智能聊天产品ChatGPT横空出世,并两个月之内吸引了超过1亿用户,打破了TikTok(抖音国际版)9个月用户破亿的纪录。 划时代的浪潮 ChatGPT的火爆立即引起了全球关注并成为热门话题,它…...
【yolov8目标检测】使用yolov8训练自己的数据集
目录 准备数据集 python安装yolov8 配置yaml 从0开始训练 从预训练模型开始训练 准备数据集 首先得准备好数据集,你的数据集至少包含images和labels,严格来说你的images应该包含训练集train、验证集val和测试集test,不过为了简单说…...
深度学习在微纳光子学中的应用
深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向: 逆向设计 通过神经网络快速预测微纳结构的光学响应,替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...
测试微信模版消息推送
进入“开发接口管理”--“公众平台测试账号”,无需申请公众账号、可在测试账号中体验并测试微信公众平台所有高级接口。 获取access_token: 自定义模版消息: 关注测试号:扫二维码关注测试号。 发送模版消息: import requests da…...
Golang dig框架与GraphQL的完美结合
将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用,可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器,能够帮助开发者更好地管理复杂的依赖关系,而 GraphQL 则是一种用于 API 的查询语言,能够提…...
基础测试工具使用经验
背景 vtune,perf, nsight system等基础测试工具,都是用过的,但是没有记录,都逐渐忘了。所以写这篇博客总结记录一下,只要以后发现新的用法,就记得来编辑补充一下 perf 比较基础的用法: 先改这…...
css的定位(position)详解:相对定位 绝对定位 固定定位
在 CSS 中,元素的定位通过 position 属性控制,共有 5 种定位模式:static(静态定位)、relative(相对定位)、absolute(绝对定位)、fixed(固定定位)和…...
DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”
目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...
GC1808高性能24位立体声音频ADC芯片解析
1. 芯片概述 GC1808是一款24位立体声音频模数转换器(ADC),支持8kHz~96kHz采样率,集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器,适用于高保真音频采集场景。 2. 核心特性 高精度:24位分辨率,…...
人机融合智能 | “人智交互”跨学科新领域
本文系统地提出基于“以人为中心AI(HCAI)”理念的人-人工智能交互(人智交互)这一跨学科新领域及框架,定义人智交互领域的理念、基本理论和关键问题、方法、开发流程和参与团队等,阐述提出人智交互新领域的意义。然后,提出人智交互研究的三种新范式取向以及它们的意义。最后,总结…...
MFC 抛体运动模拟:常见问题解决与界面美化
在 MFC 中开发抛体运动模拟程序时,我们常遇到 轨迹残留、无效刷新、视觉单调、物理逻辑瑕疵 等问题。本文将针对这些痛点,详细解析原因并提供解决方案,同时兼顾界面美化,让模拟效果更专业、更高效。 问题一:历史轨迹与小球残影残留 现象 小球运动后,历史位置的 “残影”…...
c++第七天 继承与派生2
这一篇文章主要内容是 派生类构造函数与析构函数 在派生类中重写基类成员 以及多继承 第一部分:派生类构造函数与析构函数 当创建一个派生类对象时,基类成员是如何初始化的? 1.当派生类对象创建的时候,基类成员的初始化顺序 …...
