当前位置: 首页 > news >正文

测试PySpark

文章最前: 我是Octopus,这个名字来源于我的中文名--章鱼;我热爱编程、热爱算法、热爱开源。所有源码在我的个人github ;这博客是记录我学习的点点滴滴,如果您对 Python、Java、AI、算法有兴趣,可以关注我的动态,一起学习,共同进步。

这篇文章旨在帮你写出健壮的pyspark 代码。

在这里,通过它写pyspark单元测试,看这个代码通过PySpark built,下载该目录代码,查看JIRA 看板票的pyspark测试

创建PySpark应用

这边一个例子是怎么创建pyspark应用,如果你的应用已经测试,你可以跳过这一段,测试你的pyspark程序。

现在,开始测试你的spark session

from pyspark.sql import SparkSession
from pyspark.sql.functions import col# Create a SparkSession
spark = SparkSession.builder.appName("Testing PySpark Example").getOrCreate()

接下来,创建一个DataFrame

sample_data = [{"name": "John    D.", "age": 30},{"name": "Alice   G.", "age": 25},{"name": "Bob  T.", "age": 35},{"name": "Eve   A.", "age": 28}]df = spark.createDataFrame(sample_data)

现在,我们对我们的DataFrame来定义转换算子

from pyspark.sql.functions import col, regexp_replace# Remove additional spaces in name
def remove_extra_spaces(df, column_name):# Remove extra spaces from the specified columndf_transformed = df.withColumn(column_name, regexp_replace(col(column_name), "\\s+", " "))return df_transformedtransformed_df = remove_extra_spaces(df, "name")transformed_df.show()
+---+--------+
|age|    name|
+---+--------+
| 30| John D.|
| 25|Alice G.|
| 35|  Bob T.|
| 28|  Eve A.|
+---+--------+

测试你的pyspark应用

现在来测试你的pyspark转换算子。一个选择简化DataFrame测试结果,可以简化数据或者输入数据。更好的方式写测试例子,这里有一些例子怎么去测试我们的代码,这些代码是基于spark 3.5以下版本。对于这些例子做笔记是非常值得的,可以通过测试框架,不管你是使用unittest or pytest; built-in PySpark 测试是单机的,意味着他兼容测试框架和CI测试

选项1: 仅仅使用PySpark Built-in 测试方法

import pyspark.testing
from pyspark.testing.utils import assertDataFrameEqual# Example 1
df1 = spark.createDataFrame(data=[("1", 1000), ("2", 3000)], schema=["id", "amount"])
df2 = spark.createDataFrame(data=[("1", 1000), ("2", 3000)], schema=["id", "amount"])
assertDataFrameEqual(df1, df2)  # pass, DataFrames are identical
# Example 2
df1 = spark.createDataFrame(data=[("1", 0.1), ("2", 3.23)], schema=["id", "amount"])
df2 = spark.createDataFrame(data=[("1", 0.109), ("2", 3.23)], schema=["id", "amount"])
assertDataFrameEqual(df1, df2, rtol=1e-1)  # pass, DataFrames are approx equal by rtol

 您还可以简单地比较两个 DataFrame 模式:

from pyspark.testing.utils import assertSchemaEqual
from pyspark.sql.types import StructType, StructField, ArrayType, DoubleTypes1 = StructType([StructField("names", ArrayType(DoubleType(), True), True)])
s2 = StructType([StructField("names", ArrayType(DoubleType(), True), True)])assertSchemaEqual(s1, s2)  # pass, schemas are identical

选项 2:使用单元测试

对于更复杂的测试场景,您可能需要使用测试框架。

最流行的测试框架选项之一是单元测试。让我们逐步了解如何使用内置 Pythonunittest库来编写 PySpark 测试。有关该unittest库的更多信息,请参阅此处: https: //docs.python.org/3/library/unittest.html。

首先,您需要一个 Spark 会话。您可以使用包@classmethod中的装饰器unittest来负责设置和拆除 Spark 会话。

import unittestclass PySparkTestCase(unittest.TestCase):@classmethoddef setUpClass(cls):cls.spark = SparkSession.builder.appName("Testing PySpark Example").getOrCreate()@classmethoddef tearDownClass(cls):cls.spark.stop()

 现在我们来写一个unittest类。

from pyspark.testing.utils import assertDataFrameEqualclass TestTranformation(PySparkTestCase):def test_single_space(self):sample_data = [{"name": "John    D.", "age": 30},{"name": "Alice   G.", "age": 25},{"name": "Bob  T.", "age": 35},{"name": "Eve   A.", "age": 28}]# Create a Spark DataFrameoriginal_df = spark.createDataFrame(sample_data)# Apply the transformation function from beforetransformed_df = remove_extra_spaces(original_df, "name")expected_data = [{"name": "John D.", "age": 30},{"name": "Alice G.", "age": 25},{"name": "Bob T.", "age": 35},{"name": "Eve A.", "age": 28}]expected_df = spark.createDataFrame(expected_data)assertDataFrameEqual(transformed_df, expected_df)
运行时,unittest将选取名称以“test”开头的所有函数。

选项 3:使用Pytest

pytest我们还可以使用最流行的 Python 测试框架之一来编写测试。有关 的更多信息pytest,请参阅此处的文档: https: //docs.pytest.org/en/7.1.x/contents.html。

使用pytest固定装置允许我们在测试之间共享 Spark 会话,并在测试完成时将其拆除。

import pytest@pytest.fixture
def spark_fixture():spark = SparkSession.builder.appName("Testing PySpark Example").getOrCreate()yield spark

然后我们可以这样定义我们的测试:

import pytest
from pyspark.testing.utils import assertDataFrameEqualdef test_single_space(spark_fixture):sample_data = [{"name": "John    D.", "age": 30},{"name": "Alice   G.", "age": 25},{"name": "Bob  T.", "age": 35},{"name": "Eve   A.", "age": 28}]# Create a Spark DataFrameoriginal_df = spark.createDataFrame(sample_data)# Apply the transformation function from beforetransformed_df = remove_extra_spaces(original_df, "name")expected_data = [{"name": "John D.", "age": 30},{"name": "Alice G.", "age": 25},{"name": "Bob T.", "age": 35},{"name": "Eve A.", "age": 28}]expected_df = spark.createDataFrame(expected_data)assertDataFrameEqual(transformed_df, expected_df)

当您使用该pytest命令运行测试文件时,它将选取名称以“test”开头的所有函数。

把它们放在一起!

让我们在单元测试示例中一起查看所有步骤。

# pkg/etl.py
import unittestfrom pyspark.sql import SparkSession
from pyspark.sql.functions import col
from pyspark.sql.functions import regexp_replace
from pyspark.testing.utils import assertDataFrameEqual# Create a SparkSession
spark = SparkSession.builder.appName("Sample PySpark ETL").getOrCreate()sample_data = [{"name": "John    D.", "age": 30},{"name": "Alice   G.", "age": 25},{"name": "Bob  T.", "age": 35},{"name": "Eve   A.", "age": 28}]df = spark.createDataFrame(sample_data)# Define DataFrame transformation function
def remove_extra_spaces(df, column_name):# Remove extra spaces from the specified column using regexp_replacedf_transformed = df.withColumn(column_name, regexp_replace(col(column_name), "\\s+", " "))return df_transformed
# pkg/test_etl.py
import unittestfrom pyspark.sql import SparkSession# Define unit test base class
class PySparkTestCase(unittest.TestCase):@classmethoddef setUpClass(cls):cls.spark = SparkSession.builder.appName("Sample PySpark ETL").getOrCreate()@classmethoddef tearDownClass(cls):cls.spark.stop()# Define unit test
class TestTranformation(PySparkTestCase):def test_single_space(self):sample_data = [{"name": "John    D.", "age": 30},{"name": "Alice   G.", "age": 25},{"name": "Bob  T.", "age": 35},{"name": "Eve   A.", "age": 28}]# Create a Spark DataFrameoriginal_df = spark.createDataFrame(sample_data)# Apply the transformation function from beforetransformed_df = remove_extra_spaces(original_df, "name")expected_data = [{"name": "John D.", "age": 30},{"name": "Alice G.", "age": 25},{"name": "Bob T.", "age": 35},{"name": "Eve A.", "age": 28}]expected_df = spark.createDataFrame(expected_data)assertDataFrameEqual(transformed_df, expected_df)
unittest.main(argv=[''], verbosity=0, exit=False)
在 1.734 秒内完成 1 次测试
<unittest.main.TestProgram 位于 0x174539db0>

相关文章:

测试PySpark

文章最前&#xff1a; 我是Octopus&#xff0c;这个名字来源于我的中文名--章鱼&#xff1b;我热爱编程、热爱算法、热爱开源。所有源码在我的个人github &#xff1b;这博客是记录我学习的点点滴滴&#xff0c;如果您对 Python、Java、AI、算法有兴趣&#xff0c;可以关注我的…...

C语言- 原子操作

基本概念 在C语言(尤其是C11标准之后)中,原子操作提供了一种机制,使得程序员可以在并发环境中,不使用互斥或其他同步原语,而直接对数据进行操作,同时确保数据的完整性和一致性。 原子变量和原子操作的核心思想是:无论什么时候,只有一个线程能够看到变量的修改操作。…...

设置hadoop+安装java环境

上一篇 http://t.csdnimg.cn/K3MFS 基本操作 接着上一篇 先导入之前导出的虚拟机 选择导出到对应的文件夹中 这里修改一下保存虚拟机的位置&#xff08;当然你默认也可以&#xff09; 改一个名字 新建一个share文件夹用来存放共享软件的文件夹 在虚拟机的设置中找到这个设置…...

阿里云新加坡主机服务器选择

阿里云新加坡主机有哪些选择&#xff1f;可以选择云服务器ECS或轻量应用服务器&#xff0c;都有新加坡地域可以选择&#xff0c;东南亚地区可以选择新加坡、韩国首尔、日本东京等地域&#xff0c;阿里云新加坡主机测试IP地址&#xff1a;161.117.118.93 可以测试下本地到新加坡…...

21天打卡掌握java基础操作

Java安装环境变量配置-day1 参考&#xff1a; https://www.runoob.com/w3cnote/windows10-java-setup.html 生成class文件 java21天打卡-day2 输入和输出 题目&#xff1a;设计一个程序&#xff0c;输入上次考试成绩&#xff08;int&#xff09;和本次考试成绩&#xff0…...

SQL题目记录

1.商品推荐题目 1.思路&#xff1a; 通过取差集 得出要推荐的商品差集的选取&#xff1a;except直接取差集 或者a left join b on where b null 2.知识点 1.except selectfriendship_info.user1_id as user_id,sku_id fromfriendship_infojoin favor_info on friendship_in…...

Linux程序调试器——gdb的使用

gdb的概述 GDB 全称“GNU symbolic debugger”&#xff0c;从名称上不难看出&#xff0c;它诞生于 GNU 计划&#xff08;同时诞生的还有 GCC、Emacs 等&#xff09;&#xff0c;是 Linux 下常用的程序调试器。发展至今&#xff0c;GDB 已经迭代了诸多个版本&#xff0c;当下的…...

前端打包项目上线-nginx

第一步&#xff1a;下载nginx。 直接下载 nginx/Windows-1.25.2 pgp 第二步&#xff1a;解压zip包 第三步&#xff1a;打开文件夹&#xff0c;把http里的路径打开cmd 第四步&#xff1a;打开你的http-server服务&#xff0c;没有下载去下一次就ok了 打开后就可以访问了 第五步…...

创龙瑞芯微RK3568参数修改(调试口波特率和rootfs文件)

前言 前面写了基本的文件编译、系统编译和系统烧写&#xff0c;差不多前期工作就准备的差不多了。目前的东西能解决大部分入门级的需求。当然如果需要开发的话&#xff0c;还需要修改其他东西&#xff0c;下面一步一步的给小伙伴介绍关键参数怎么修改。 给定波特率 拿到开发板…...

VMware——VMware17安装WindowServer2012R2环境(图解版)

目录 一、WindowServer2012R2镜像百度云下载二、安装 一、WindowServer2012R2镜像百度云下载 下载链接&#xff1a;https://pan.baidu.com/s/1TWnSRJTk0ruGNn4YinzIgA 提取码&#xff1a;e7u0 二、安装 打开虚拟机&#xff0c;点击【创建新的虚拟机】&#xff0c;如下图&…...

ModuleNotFoundError: No module named ‘torch‘

目录 情况1,真的没有安装pytorch情况2(安装了与CUDA不对应的pytorch版本导致无法识别出torch) 情况1,真的没有安装pytorch 虚拟环境里面真的是没有torch,这种情况就easy job了,点击此链接直接安装与CUDA对应的pytorch版本,CTRLF直接搜索对应CUDA版本即可查找到对应的命令.按图…...

采用Spring Boot框架开发的医院预约挂号系统3e3g0+vue+java

本医院预约挂号系统有管理员&#xff0c;医生和用户。管理员功能有个人中心&#xff0c;用户管理&#xff0c;医生管理&#xff0c;科室信息管理&#xff0c;预约挂号管理&#xff0c;用户投诉管理&#xff0c;投诉处理管理&#xff0c;通知公告管理&#xff0c;科室分类管理。…...

Jmeter性能测试(压力测试)

1.先保存 2.添加请求&#xff08;即添加一个线程组&#xff09; 3.添加取样器&#xff08;在线程组下面添加一个http请求&#xff09; 场景1&#xff1a;模拟半小时之内1000个用户访问服务器资源&#xff0c;要求平均响应时间在3000毫秒内&#xff0c;且错误率为0&#xff0…...

NetCore/Net8下使用Redis的分布式锁实现秒杀功能

目的 本文主要是使用NetCore/Net8加上Redis来实现一个简单的秒杀功能&#xff0c;学习Redis的分布式锁功能。 准备工作 1.Visual Studio 2022开发工具 2.Redis集群&#xff08;6个Redis实例&#xff0c;3主3从&#xff09;或者单个Redis实例也可以。 实现思路 1.秒杀开始…...

openGauss学习笔记-102 openGauss 数据库管理-管理数据库安全-客户端接入之查看数据库连接数

文章目录 openGauss学习笔记-102 openGauss 数据库管理-管理数据库安全-客户端接入之查看数据库连接数102.1 背景信息102.2 操作步骤 openGauss学习笔记-102 openGauss 数据库管理-管理数据库安全-客户端接入之查看数据库连接数 102.1 背景信息 当用户连接数达到上限后&#…...

lspci源码

lspci 显示Linux系统的pci设备最简单的方法就是使用lspci命令&#xff0c;前提是要安装pciutils包&#xff08;centos在最小化安装时不会自带该包&#xff0c;需要自己下载安装&#xff09; pciutils包的源码github地址为&#xff1a; https://github.com/pciutils/pciutils …...

CMake教程-第 8 步:添加自定义命令和生成文件

CMake教程-第 8 步&#xff1a;添加自定义命令和生成文件 1 CMake教程介绍2 学习步骤Step 1: A Basic Starting PointStep 2: Adding a LibraryStep 3: Adding Usage Requirements for a LibraryStep 4: Adding Generator ExpressionsStep 5: Installing and TestingStep 6: Ad…...

快速入门:Spring Cache

目录 一:Spring Cache简介 二:Spring Cache常用注解 2.1:EnableCaching 2.2: Cacheable 2.3:CachePut 2.4:CacheEvict 三:Spring Cache案例 3.1:先在pom.xml中引入两个依赖 3.2:案例 3.2.1:构建数据库表 3.2.2:构建User类 3.2.3:构建Controller mapper层代码 3.…...

探索音频传输系统:数字声音的无限可能 | 百能云芯

音频传输系统是一项关键的技术&#xff0c;已经在数字时代的各个领域中广泛应用&#xff0c;从音乐流媒体到电话通信&#xff0c;再到多媒体制作。本文将深入探讨音频传输系统的定义、工作原理以及在现代生活中的各种应用&#xff0c;以帮助您更好地了解这一重要技术。 音频传输…...

【C++】-c++的类型转换

&#x1f496;作者&#xff1a;小树苗渴望变成参天大树&#x1f388; &#x1f389;作者宣言&#xff1a;认真写好每一篇博客&#x1f4a4; &#x1f38a;作者gitee:gitee✨ &#x1f49e;作者专栏&#xff1a;C语言,数据结构初阶,Linux,C 动态规划算法&#x1f384; 如 果 你 …...

第19节 Node.js Express 框架

Express 是一个为Node.js设计的web开发框架&#xff0c;它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用&#xff0c;和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...

云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?

大家好&#xff0c;欢迎来到《云原生核心技术》系列的第七篇&#xff01; 在上一篇&#xff0c;我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在&#xff0c;我们就像一个拥有了一块崭新数字土地的农场主&#xff0c;是时…...

<6>-MySQL表的增删查改

目录 一&#xff0c;create&#xff08;创建表&#xff09; 二&#xff0c;retrieve&#xff08;查询表&#xff09; 1&#xff0c;select列 2&#xff0c;where条件 三&#xff0c;update&#xff08;更新表&#xff09; 四&#xff0c;delete&#xff08;删除表&#xf…...

大话软工笔记—需求分析概述

需求分析&#xff0c;就是要对需求调研收集到的资料信息逐个地进行拆分、研究&#xff0c;从大量的不确定“需求”中确定出哪些需求最终要转换为确定的“功能需求”。 需求分析的作用非常重要&#xff0c;后续设计的依据主要来自于需求分析的成果&#xff0c;包括: 项目的目的…...

【力扣数据库知识手册笔记】索引

索引 索引的优缺点 优点1. 通过创建唯一性索引&#xff0c;可以保证数据库表中每一行数据的唯一性。2. 可以加快数据的检索速度&#xff08;创建索引的主要原因&#xff09;。3. 可以加速表和表之间的连接&#xff0c;实现数据的参考完整性。4. 可以在查询过程中&#xff0c;…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》

在注意力分散、内容高度同质化的时代&#xff0c;情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现&#xff0c;消费者对内容的“有感”程度&#xff0c;正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中&#xff0…...

【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验

系列回顾&#xff1a; 在上一篇中&#xff0c;我们成功地为应用集成了数据库&#xff0c;并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了&#xff01;但是&#xff0c;如果你仔细审视那些 API&#xff0c;会发现它们还很“粗糙”&#xff1a;有…...

在WSL2的Ubuntu镜像中安装Docker

Docker官网链接: https://docs.docker.com/engine/install/ubuntu/ 1、运行以下命令卸载所有冲突的软件包&#xff1a; for pkg in docker.io docker-doc docker-compose docker-compose-v2 podman-docker containerd runc; do sudo apt-get remove $pkg; done2、设置Docker…...

网络编程(UDP编程)

思维导图 UDP基础编程&#xff08;单播&#xff09; 1.流程图 服务器&#xff1a;短信的接收方 创建套接字 (socket)-----------------------------------------》有手机指定网络信息-----------------------------------------------》有号码绑定套接字 (bind)--------------…...

GC1808高性能24位立体声音频ADC芯片解析

1. 芯片概述 GC1808是一款24位立体声音频模数转换器&#xff08;ADC&#xff09;&#xff0c;支持8kHz~96kHz采样率&#xff0c;集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器&#xff0c;适用于高保真音频采集场景。 2. 核心特性 高精度&#xff1a;24位分辨率&#xff0c…...