当前位置: 首页 > news >正文

基于白鲸优化的BP神经网络(分类应用) - 附代码

基于白鲸优化的BP神经网络(分类应用) - 附代码

文章目录

  • 基于白鲸优化的BP神经网络(分类应用) - 附代码
    • 1.鸢尾花iris数据介绍
    • 2.数据集整理
    • 3.白鲸优化BP神经网络
      • 3.1 BP神经网络参数设置
      • 3.2 白鲸算法应用
    • 4.测试结果:
    • 5.Matlab代码

摘要:本文主要介绍如何用白鲸算法优化BP神经网络,利用鸢尾花数据,做一个简单的讲解。

1.鸢尾花iris数据介绍

本案例利用matlab公用的iris鸢尾花数据,作为测试数据,iris数据是特征为4维,类别为3个类别。数据格式如下:

特征1特征2特征3类别
单组iris数据5.32.11.21

3种类别用1,2,3表示。

2.数据集整理

iris数据总共包含150组数据,将其分为训练集105组,测试集45组。如下表所示:

训练集(组)测试集(组)总数据(组)
10545150

类别数据处理:原始数据类别用1,2,3表示为了方便神经网络训练,类别1,2,3分别用1,0,0;0,1,0;0,0,1表示。

当进行数据训练对所有输入特征数据均进行归一化处理。

3.白鲸优化BP神经网络

3.1 BP神经网络参数设置

通常而言,利用智能算法一般优化BP神经网络的初始权值和阈值来改善BP神经网络的性能。本案例基于iris数据,由于iris数据维度不高,采用简单的BP神经网络。神经网络参数如下:

神经网络结构

图1.神经网络结构

神经网络参数如下:

%创建神经网络
inputnum = 4;     %inputnum  输入层节点数 4维特征
hiddennum = 10;     %hiddennum  隐含层节点数
outputnum = 3;     %outputnum  隐含层节点数
net = newff( minmax(input) , [hiddennum outputnum] , { 'logsig' 'purelin' } , 'traingdx' ) ;
%设置训练参数
net.trainparam.show = 50 ;
net.trainparam.epochs = 200 ;
net.trainparam.goal = 0.01 ;
net.trainParam.lr = 0.01 ;

3.2 白鲸算法应用

白鲸算法原理请参考:https://blog.csdn.net/u011835903/article/details/127642354

白鲸算法的参数设置为:

popsize = 10;%种群数量Max_iteration = 15;%最大迭代次数
lb = -5;%权值阈值下边界
ub = 5;%权值阈值上边界
%  inputnum * hiddennum + hiddennum*outputnum 为阈值的个数
%  hiddennum + outputnum 为权值的个数
dim =  inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum ;%  inputnum * hiddennum + hiddennum*outputnum维度

这里需要注意的是,神经网络的阈值数量计算方式如下:

本网络有2层:

第一层的阈值数量为:4*10 = 40; 即inputnum * hiddennum;

第一层的权值数量为:10;即hiddennum;

第二层的阈值数量为:3*10 = 30;即hiddenum * outputnum;

第二层权值数量为:3;即outputnum;

于是可知我们优化的维度为:inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum = 83;

适应度函数值设定:

本文设置适应度函数如下:
f i t n e s s = a r g m i n ( T r a i n D a t a E r r o r R a t e + T e s t D a t a E r r o r R a t e ) fitness = argmin(TrainDataErrorRate + TestDataErrorRate) fitness=argmin(TrainDataErrorRate+TestDataErrorRate)
其中TrainDataErrorRate,TestDataErrorRate分别为训练集和测试集的错误分类率。适应度函数表明我们最终想得到的网络是在测试集和训练集上均可以得到较好结果的网络。

4.测试结果:

从白鲸算法的收敛曲线可以看到,整体误差是不断下降的,说明白鲸算法起到了优化的作用:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5.Matlab代码

相关文章:

基于白鲸优化的BP神经网络(分类应用) - 附代码

基于白鲸优化的BP神经网络(分类应用) - 附代码 文章目录 基于白鲸优化的BP神经网络(分类应用) - 附代码1.鸢尾花iris数据介绍2.数据集整理3.白鲸优化BP神经网络3.1 BP神经网络参数设置3.2 白鲸算法应用 4.测试结果:5.M…...

Matlab遗传算法工具箱——一个例子搞懂遗传算法

解决问题 我们一般使用遗传算法是用来处理最优解问题的,下面是一个最优解问题的例子 打开遗传算法工具箱 ①在Matlab界面找到应用程序选项,点击应用程序(英文版的Matlab可以点击App选项) ②找到Optimization工具箱,点击打开 创建所需要…...

Coreldraw2020最新64位电脑完整版本下载教程

安装之前所有的杀毒软件都要退出。无论是360,腾讯管家,或者电脑自带的安全中心,要不然会阻止安装。 CorelDRAW2020版win下载如下:https://wm.makeding.com/iclk/?zoneid55678 CorelDRAW2020版mac下载如下:https://wm.makeding.com/iclk/?…...

第一节——vue安装+前端工程化

作者:尤雨溪 官网:简介 | Vue.js 脚手架文档 创建一个项目 | Vue CLI 一、概念(了解) 是一套用于构建用户界面的渐进式框架。与其它大型框架不同的是,Vue 被设计为可以自底向上逐层应用。Vue 的核心库只关注视图层&…...

vue集成钉钉单点登录

初始环境判断 判断是否是来自钉钉环境的访问,返回:boolean类型值 window.navigator.userAgent.includes("DingTalk")前端引入vue中钉钉相关的依赖,并获取钉钉的临时授权码 import * as dingtalk from dingtalk-jsapi; let that …...

凉鞋的 Godot 笔记 203. 变量的常用类型

203. 变量的常用类型 在上一篇,我们对变量进行了概述和简介,知识地图如下: 我们已经接触了,变量的字符串类型,以及一些功能。 在这一篇,我们尝试多接触一些变量的类型。 首先是整数类型。 整数类型 整…...

【现场问题】批量新建工作流的问题

批量建工作流的优势和劣势 关于批量建工作流的优势缺点 关于批量建工作流的优势 不需要手动,直接一键建立,同时节点的批量建立也成功了 缺点 1、机器识别,一次性成形,没有办法手动的去干涉这东西 2、大数据量的表需要单独处理的…...

动态规划14(Leetcode516最长回文子序列)

代码&#xff1a; class Solution {public int longestPalindromeSubseq(String s) {int n s.length();int[][] dp new int[n][n];for(int in-1;i>0;i--){dp[i][i] 1;char c1 s.charAt(i);for(int ji1;j<n;j){char c2 s.charAt(j);if(c1c2){dp[i][j] dp[i1][j-1]2…...

写一个简单的解释器(0) 简介和目标

解释语言和编译语言 编译语言&#xff0c;是指其编译器生成的可执行文件为机器码&#xff0c;可以直接在计算机上运行的语言&#xff0c;比如说 C/C \texttt{C/C} C/C 。 解释语言&#xff0c;是指经由解释器生成的可执行文件为字节码文件&#xff0c;只能运行在特殊的虚拟机…...

通过Chain Prompts方式将LLM的能力引入测试平台:正交实验测试用例生成

通过Chain Prompts方式将LLM的能力引入测试平台:正交实验测试用例生成 Chain Prompts Chain Prompts是指在一个对话或文本生成任务中,将前一个提示的输出作为下一个提示的输入,形成一个连续的链条。这种方法常常用于创建连贯的、有上下文关联的文本。在对话系统中,这种方…...

M-BUS和modbus的区别是什么?

M-BUS与Modbus是两种在工业自动化和楼宇自动化领域广泛应用的通信协议。那么&#xff0c;这两种通信协议有哪些区别呢?下面&#xff0c;就由小编带大家一起来了解下吧! 一、简介 M-BUS(Multi-dropBus&#xff0c;多点通信总线)和Modbus(莫迪波特率)都是用于设备和系统之间通信…...

CSS 滚动驱动动画 timeline-scope

timeline-scope 语法兼容性 timeline-scope 看到 scope 就知道这个属性是和范围有关, 没错, timeline-scope 就是用来修改一个具名时间线(named animation timeline)的范围. 我们介绍过的两种时间线 scroll progress timeline 和 view progress timeline, 使用这两种时间线(通…...

R语言时间序列分析

目录 概述 1、什么是时间序列分析 2、时间序列分析的应用 时间序列的基本操作...

房产中介小程序,二手房小程序带H5公众号,房产门户PC版,房产中介,房产经纪人

套餐一:源码=1500 套餐二:全包服务 包服务器+APP+认证小程序+H5+PC+采集=2000(全包服务三年) 可以封装打包APP 一、付费发布信息 支持付费发布、刷新、置顶房源信息; 二、个人发布信息 支持个人和房产经纪人发布房源信息; 三、新房楼盘模块 支持新房楼盘功能,后台添加…...

Docker 部署

1 完全清除旧版本docker for pkg in docker.io docker-doc docker-compose docker-compose-v2 podman-docker containerd runc; do sudo apt-get remove $pkg; doneImages, containers, volumes, and networks stored in /var/lib/docker/ arent automatically removed when y…...

ffmpeg推流+nginx转发+拉流(RTMP拉流)

参考:https://blog.csdn.net/weixin_43796767/article/details/117307845 1.搭建支持rtmp转发的nginx服务 git clone https://github.com/arut/nginx-rtmp-module wget http://nginx.org/download/nginx-1.8.0.tar.gz tar -xvf nginx-1.8.0.tar.gz cd nginx-1.8.0/ ./confi…...

【Python第三方包】解析和生成二维码(pyqrcode包)

文章目录 前言一、安装pyqrcode包二、生成二维码2.1 二维码生成基础使用2.2 自定义二维码样式颜色设置错误纠正级别尺寸设置三、解析二维码总结前言 在现代信息时代,二维码(QR码)已经成为了快速传递信息的常见方式。Python提供了多种第三方包,用于生成和解析二维码。其中,…...

自适应键盘高度

自适应系统键盘 背景代码demo 背景 键盘高度无法获取&#xff0c;倒是输入框抖动问题 代码 设置 android:windowSoftInputMode“adjustNothing” public class KeyBoardHelper {private static final String TAG "KeyBoardHeightHelper";private PopupWindow po…...

【JavaEE】计算机是如何工作的

计算机是如何工作的 冯诺依曼体系操作系统操作系统的概念与定位进程和任务操作系统对进程的管理PCB 的相关信息 冯诺依曼体系 现代的大多数计算机, 都遵循冯诺依曼体系 CPU 中央处理器: 进行算术运算和逻辑判断存储器: 分为外存和内存, 用于存储数据(使用二进制方式存储)输入…...

12JVM基础

五、JVM 17、JVM基础 说一下堆栈的区别&#xff1f; 功能方面&#xff1a;堆是用来存放对象的&#xff0c;栈是用来执行程序的。 共享性&#xff1a;堆是线程共享的&#xff0c;栈是线程私有的。 空间大小&#xff1a;堆大小远远大于栈。队列和栈是什么&#xff1f;有什么区别…...

第19节 Node.js Express 框架

Express 是一个为Node.js设计的web开发框架&#xff0c;它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用&#xff0c;和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...

TDengine 快速体验(Docker 镜像方式)

简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能&#xff0c;本节首先介绍如何通过 Docker 快速体验 TDengine&#xff0c;然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker&#xff0c;请使用 安装包的方式快…...

从WWDC看苹果产品发展的规律

WWDC 是苹果公司一年一度面向全球开发者的盛会&#xff0c;其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具&#xff0c;对过去十年 WWDC 主题演讲内容进行了系统化分析&#xff0c;形成了这份…...

阿里云ACP云计算备考笔记 (5)——弹性伸缩

目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...

前端倒计时误差!

提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...

从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路

进入2025年以来&#xff0c;尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断&#xff0c;但全球市场热度依然高涨&#xff0c;入局者持续增加。 以国内市场为例&#xff0c;天眼查专业版数据显示&#xff0c;截至5月底&#xff0c;我国现存在业、存续状态的机器人相关企…...

(二)原型模式

原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...

uniapp中使用aixos 报错

问题&#xff1a; 在uniapp中使用aixos&#xff0c;运行后报如下错误&#xff1a; AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...

Java 二维码

Java 二维码 **技术&#xff1a;**谷歌 ZXing 实现 首先添加依赖 <!-- 二维码依赖 --><dependency><groupId>com.google.zxing</groupId><artifactId>core</artifactId><version>3.5.1</version></dependency><de…...

【Java学习笔记】BigInteger 和 BigDecimal 类

BigInteger 和 BigDecimal 类 二者共有的常见方法 方法功能add加subtract减multiply乘divide除 注意点&#xff1a;传参类型必须是类对象 一、BigInteger 1. 作用&#xff1a;适合保存比较大的整型数 2. 使用说明 创建BigInteger对象 传入字符串 3. 代码示例 import j…...