当前位置: 首页 > news >正文

Redis实现附近商户

GEO数据结构的基本用法

GEO就是Geolocation的简写形式,代表地理坐标。Redis在3.2版本中加入了对GEO的支持,允许存储地理坐标信息,帮助我们根据经纬度来检索数据。常见的命令有:

  • GEOADD:添加一个地理空间信息,包含:经度(longitude)、纬度(latitude)、值(member)
  • GEODIST:计算指定的两个点之间的距离并返回
  • GEOHASH:将指定member的坐标转为hash字符串形式并返回
  • GEOPOS:返回指定member的坐标
  • GEORADIUS:指定圆心、半径,找到该圆内包含的所有member,并按照与圆心之间的距离排序后返回。6.以后已废弃
  • GEOSEARCH:在指定范围内搜索member,并按照与指定点之间的距离排序后返回。范围可以是圆形或矩形。6.2.新功能
  • GEOSEARCHSTORE:与GEOSEARCH功能一致,不过可以把结果存储到一个指定的key。 6.2.新功能

导入店铺数据到GEO  

当我们点击美食之后,会出现一系列的商家,商家中可以按照多种排序方式,我们此时关注的是距离,这个地方就需要使用到我们的GEO,向后台传入当前app收集的地址(我们此处是写死的) ,以当前坐标作为圆心,同时绑定相同的店家类型type,以及分页信息,把这几个条件传入后台,后台查询出对应的数据再返回。

我们要做的事情是:将数据库表中的数据导入到redis中去,redis中的GEO,GEO在redis中就一个menber和一个经纬度,我们把x和y轴传入到redis做的经纬度位置去,但我们不能把所有的数据都放入到menber中去,毕竟作为redis是一个内存级数据库,如果存海量数据,redis还是力不从心,所以我们在这个地方存储他的id即可。

但是这个时候还有一个问题,就是在redis中并没有存储type,所以我们无法根据type来对数据进行筛选,所以我们可以按照商户类型做分组,类型相同的商户作为同一组,以typeId为key存入同一个GEO集合中即可

@Test
void loadShopData() {// 1.查询店铺信息List<Shop> list = shopService.list();// 2.把店铺分组,按照typeId分组,typeId一致的放到一个集合Map<Long, List<Shop>> map = list.stream().collect(Collectors.groupingBy(Shop::getTypeId));// 3.分批完成写入Redisfor (Map.Entry<Long, List<Shop>> entry : map.entrySet()) {// 3.1.获取类型idLong typeId = entry.getKey();String key = SHOP_GEO_KEY + typeId;// 3.2.获取同类型的店铺的集合List<Shop> value = entry.getValue();List<RedisGeoCommands.GeoLocation<String>> locations = new ArrayList<>(value.size());// 3.3.写入redis GEOADD key 经度 纬度 memberfor (Shop shop : value) {// stringRedisTemplate.opsForGeo().add(key, new Point(shop.getX(), shop.getY()), shop.getId().toString());locations.add(new RedisGeoCommands.GeoLocation<>(shop.getId().toString(),new Point(shop.getX(), shop.getY())));}stringRedisTemplate.opsForGeo().add(key, locations);}
}

实现附近商户功能

SpringDataRedis的2.3.9版本并不支持Redis 6.2提供的GEOSEARCH命令,因此我们需要提示其版本,修改自己的POM

<dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-redis</artifactId><exclusions><exclusion><artifactId>spring-data-redis</artifactId><groupId>org.springframework.data</groupId></exclusion><exclusion><artifactId>lettuce-core</artifactId><groupId>io.lettuce</groupId></exclusion></exclusions>
</dependency>
<dependency><groupId>org.springframework.data</groupId><artifactId>spring-data-redis</artifactId><version>2.6.2</version>
</dependency>
<dependency><groupId>io.lettuce</groupId><artifactId>lettuce-core</artifactId><version>6.1.6.RELEASE</version>
</dependency>

ShopController

@GetMapping("/of/type")
public Result queryShopByType(@RequestParam("typeId") Integer typeId,@RequestParam(value = "current", defaultValue = "1") Integer current,@RequestParam(value = "x", required = false) Double x,@RequestParam(value = "y", required = false) Double y
) {return shopService.queryShopByType(typeId, current, x, y);
}

ShopServiceImpl

@Overridepublic Result queryShopByType(Integer typeId, Integer current, Double x, Double y) {// 1.判断是否需要根据坐标查询if (x == null || y == null) {// 不需要坐标查询,按数据库查询Page<Shop> page = query().eq("type_id", typeId).page(new Page<>(current, SystemConstants.DEFAULT_PAGE_SIZE));// 返回数据return Result.ok(page.getRecords());}// 2.计算分页参数int from = (current - 1) * SystemConstants.DEFAULT_PAGE_SIZE;int end = current * SystemConstants.DEFAULT_PAGE_SIZE;// 3.查询redis、按照距离排序、分页。结果:shopId、distanceString key = SHOP_GEO_KEY + typeId;GeoResults<RedisGeoCommands.GeoLocation<String>> results = stringRedisTemplate.opsForGeo() // GEOSEARCH key BYLONLAT x y BYRADIUS 10 WITHDISTANCE.search(key,GeoReference.fromCoordinate(x, y),new Distance(5000),RedisGeoCommands.GeoSearchCommandArgs.newGeoSearchArgs().includeDistance().limit(end));// 4.解析出idif (results == null) {return Result.ok(Collections.emptyList());}List<GeoResult<RedisGeoCommands.GeoLocation<String>>> list = results.getContent();if (list.size() <= from) {// 没有下一页了,结束return Result.ok(Collections.emptyList());}// 4.1.截取 from ~ end的部分List<Long> ids = new ArrayList<>(list.size());Map<String, Distance> distanceMap = new HashMap<>(list.size());list.stream().skip(from).forEach(result -> {// 4.2.获取店铺idString shopIdStr = result.getContent().getName();ids.add(Long.valueOf(shopIdStr));// 4.3.获取距离Distance distance = result.getDistance();distanceMap.put(shopIdStr, distance);});// 5.根据id查询ShopString idStr = StrUtil.join(",", ids);List<Shop> shops = query().in("id", ids).last("ORDER BY FIELD(id," + idStr + ")").list();for (Shop shop : shops) {shop.setDistance(distanceMap.get(shop.getId().toString()).getValue());}// 6.返回return Result.ok(shops);}

相关文章:

Redis实现附近商户

GEO数据结构的基本用法 GEO就是Geolocation的简写形式&#xff0c;代表地理坐标。Redis在3.2版本中加入了对GEO的支持&#xff0c;允许存储地理坐标信息&#xff0c;帮助我们根据经纬度来检索数据。常见的命令有&#xff1a; GEOADD&#xff1a;添加一个地理空间信息&#xf…...

【COMP305 LEC 3 LEC 4】

LEC 3 A basic abstract model for a biological neuron 1. Weights of connections Neuron gets fired if it has received from the presynaptic neurons 突触前神经元 a summary impulse 脉冲, which is above a certain threshold. Signal from a single synapse突触 ma…...

国密https访问

前言 现在的SSL的加密算法实际上主要是国际算法&#xff0c;包括JDK&#xff0c;Go等语言也仅支持国际算法加密&#xff08;毕竟是国外开源项目&#xff09;&#xff0c;hash。随着国密算法的普及&#xff0c;比如openssl就支持国密了&#xff0c;还要新版本的Linux内核也开始…...

31二叉树-递归遍历二叉树

目录 LeetCode之路——145. 二叉树的后序遍历 分析 LeetCode之路——94. 二叉树的中序遍历 分析 LeetCode之路——145. 二叉树的后序遍历 给你一棵二叉树的根节点 root &#xff0c;返回其节点值的 后序遍历 。 示例 1&#xff1a; 输入&#xff1a;root [1,null,2,3] 输出…...

【【萌新的FPGA学习之管脚设定xdc文件】】

萌新的FPGA学习之管脚设定xdc文件 xdc文件可以自己设置 也可以匹配 我们根据正点原子的流水灯管脚设定 主要讲述一下 各个英文设计是什么意思 Name&#xff1a;工程中顶层端口的名称。 Direction&#xff1a;说明管脚是输入还是输出。 Neg Diff Pair&#xff1a;负差分对&…...

tomcat---动静分离

访问静态和动态页面分开 实现动态的静态页面负载均衡 实验一 准备阶段&#xff1a;三台虚拟机 nginx代理服务器 &#xff1a;20.0.0.40 tomcat1 &#xff1a;20.0.0.50 tomcat2&#xff1a;20.0.0.51 配置关闭虚拟机防火墙和安全机制 systemctl stop firewalld setenf…...

Spring MVC(一)【什么是Spring MVC】

重点 Spring&#xff1a;IOC 和 AOP 。 Spring MVC &#xff1a;Spring MVC 的执行流程。 SSM 框架的整合&#xff01; Spring 和 Mybatis 我们不建议使用太多注解&#xff0c;Spring MVC 建议全部使用注解开发&#xff01; 1、MVC 回顾 1.1、什么是MVC MVC是模型(Model)…...

.npmrc 使用详解

配置.npmrc之后需要&#xff1a; 清理项目目录中的 node _modules 目录(package-lock.json,umi)。清理 node cache: npm cache clear --force&#xff1b;{ 此步骤必须&#xff0c;主要是大家的电脑经过多年使用后&#xff0c;npm 配置比较混乱&#xff0c;为了避免或者减少配…...

3D视觉硬件技术

目前市面上主流的3D光学视觉方案有三种&#xff1a; 双目立体视觉法&#xff08;Stereo Vision&#xff0c;在下文称双目法&#xff09;&#xff0c;结构光法&#xff08;Structured Light&#xff0c;在下文称结构光&#xff09;以及飞行时间法(Time of Flight, ToF在下文称T…...

【使用OpenCV进行目标分割与计数的代码实例详解】

文章目录 概要实例一&#xff1a;硬币分割计数实例二&#xff1a;玉米粒分割计数 概要 在当今数字图像处理领域&#xff0c;图像分割技术是一项至关重要的任务。图像分割旨在将图像中的不同目标或区域准确地分开&#xff0c;为计算机视觉、图像识别和机器学习等领域提供了坚实…...

npm ERR! exited with error code: 128

1.遇到的问题 报错信息&#xff1a;npm ERR! E:\tools\Gitt\Git\cmd\git.EXE ls-remote -h -t https://github.com/nhn/raphael.git npm ERR! npm ERR! fatal: unable to access https://github.com/nhn/raphael.git/: OpenSSL SSL_read: Connection was reset, errno 10054 …...

Spark---数据输出

1. 输出为Python对象 collect算子&#xff1a;将RDD各个分区内的数据&#xff0c;统一收集到Driver中&#xff0c;形成一个List对象 reduce算子&#xff1a;对RDD数据集按照传入的逻辑进行聚合 take算子&#xff1a;取RDD的前N个元素&#xff0c;组合成list返回给你 count…...

虹科干货 | Redis Enterprise 自动分层技术:大数据集高性能解决方案

文章来源&#xff1a;虹科云科技 阅读原文&#xff1a;https://mp.weixin.qq.com/s/5ik-WLHwEmPn42f1FissQw 越来越多的应用程序依赖于庞大的数据集合&#xff0c;而这些应用程序必须快速响应。借助自动分层&#xff0c;Redis Enterprise 7.2 帮助开发人员轻松创建超快的应用程…...

信息系统项目管理师第四版学习笔记——组织通用治理

组织战略 组织战略是组织高质量发展的总体谋略&#xff0c;是组织相关干系方就其发展达成一致认识的重要基础。组织战略是指组织针对其发展进行的全局性、长远性、纲领性目标的策划和选择。 战略目标是组织在一定的战略期内总体发展的总水平和总任务。它决定了组织在该战略期…...

安装zip扩展(PHP)

记录一次 安装zip扩展的最优方案 &#xff08;备注 网上以及Ai提供的很乱不能很快解决&#xff09; 首先搜索zip包 yum search zip选择自己合适的php版本 比如我的php是7.4.33的 我就用php74-php-pecl-zip 如果没有的话 先添加软件源 sudo yum install epel-release sudo yu…...

深度学习YOLOv4环境配置

软件安装 1、什么是CUDA CUDA(ComputeUnified Device Architecture)&#xff0c;是显卡厂商NVIDIA推出的运算平台。 CUDA是一种由NVIDIA推出的通用并行计算架构&#xff0c;该架构使GPU能够解决复杂的计算问题。 CUDA下载地址为CUDA Toolkit Archive | NVIDIA Developer 版…...

从0到1:云计算工程师入门指南

华为职业认证覆盖ICT全领域&#xff0c;致力于提供领先的人才培养体系和认证标准培养数字化时代的新型ICT人才&#xff0c;构建良性的ICT人才生态。 华为推荐职业认证进阶路线 根据ICT从业者的学习和进阶需求华为职业认证分为工程师级别、高级工程师级别和专家级别三个认证等…...

【微信小程序】6天精准入门(第3天:小程序flex布局、轮播图组件及mock运用以及综合案例)附源码

一、flex布局 布局的传统解决方案&#xff0c;基于[盒状模型]&#xff0c;依赖display属性 position属性 float属性 1、什么是flex布局&#xff1f; Flex是Flexible Box的缩写&#xff0c;意为”弹性布局”&#xff0c;用来为盒状模型提供最大的灵活性。任何一个容器都可以…...

Hadoop3教程(二十五):Yarn的多队列调度器使用案例

文章目录 &#xff08;136&#xff09;生产环境多队列创建&好处&#xff08;137&#xff09;容量调度器多队列提交案例如何创建多个队列如何向指定队列提交任务 &#xff08;138&#xff09;容量调度器任务优先级&#xff08;139&#xff09;公平调度器案例参考文献 &#…...

【SA8295P 源码分析 (四)】27 - QNX Ethernet MAC 驱动 之 emac_tx_thread_handler 数据发送线程 源码分析

【SA8295P 源码分析】27 - QNX Ethernet MAC 驱动 之 emac_tx_thread_handler 数据发送线程 源码分析 系列文章汇总见:《【SA8295P 源码分析 (四)】网络模块 文章链接汇总 - 持续更新中》 本文链接:《【SA8295P 源码分析 (四)】27 - QNX Ethernet MAC 驱动 之 emac_tx_thread…...

Spark 之 入门讲解详细版(1)

1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室&#xff08;Algorithms, Machines, and People Lab&#xff09;开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目&#xff0c;8个月后成为Apache顶级项目&#xff0c;速度之快足见过人之处&…...

K8S认证|CKS题库+答案| 11. AppArmor

目录 11. AppArmor 免费获取并激活 CKA_v1.31_模拟系统 题目 开始操作&#xff1a; 1&#xff09;、切换集群 2&#xff09;、切换节点 3&#xff09;、切换到 apparmor 的目录 4&#xff09;、执行 apparmor 策略模块 5&#xff09;、修改 pod 文件 6&#xff09;、…...

微信小程序 - 手机震动

一、界面 <button type"primary" bindtap"shortVibrate">短震动</button> <button type"primary" bindtap"longVibrate">长震动</button> 二、js逻辑代码 注&#xff1a;文档 https://developers.weixin.qq…...

Java入门学习详细版(一)

大家好&#xff0c;Java 学习是一个系统学习的过程&#xff0c;核心原则就是“理论 实践 坚持”&#xff0c;并且需循序渐进&#xff0c;不可过于着急&#xff0c;本篇文章推出的这份详细入门学习资料将带大家从零基础开始&#xff0c;逐步掌握 Java 的核心概念和编程技能。 …...

自然语言处理——Transformer

自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效&#xff0c;它能挖掘数据中的时序信息以及语义信息&#xff0c;但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN&#xff0c;但是…...

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...

浅谈不同二分算法的查找情况

二分算法原理比较简单&#xff0c;但是实际的算法模板却有很多&#xff0c;这一切都源于二分查找问题中的复杂情况和二分算法的边界处理&#xff0c;以下是博主对一些二分算法查找的情况分析。 需要说明的是&#xff0c;以下二分算法都是基于有序序列为升序有序的情况&#xf…...

AI书签管理工具开发全记录(十九):嵌入资源处理

1.前言 &#x1f4dd; 在上一篇文章中&#xff0c;我们完成了书签的导入导出功能。本篇文章我们研究如何处理嵌入资源&#xff0c;方便后续将资源打包到一个可执行文件中。 2.embed介绍 &#x1f3af; Go 1.16 引入了革命性的 embed 包&#xff0c;彻底改变了静态资源管理的…...

中医有效性探讨

文章目录 西医是如何发展到以生物化学为药理基础的现代医学&#xff1f;传统医学奠基期&#xff08;远古 - 17 世纪&#xff09;近代医学转型期&#xff08;17 世纪 - 19 世纪末&#xff09;​现代医学成熟期&#xff08;20世纪至今&#xff09; 中医的源远流长和一脉相承远古至…...

Fabric V2.5 通用溯源系统——增加图片上传与下载功能

fabric-trace项目在发布一年后,部署量已突破1000次,为支持更多场景,现新增支持图片信息上链,本文对图片上传、下载功能代码进行梳理,包含智能合约、后端、前端部分。 一、智能合约修改 为了增加图片信息上链溯源,需要对底层数据结构进行修改,在此对智能合约中的农产品数…...