学会使用Pandas进行数据清洗
大家好,如果你对数据科学感兴趣,那么数据清洗可能对你来说是一个熟悉的术语,本文将向你介绍使用Pandas进行数据清洗的过程。我们的数据通常来自多个资源,而且并不干净,它可能包含缺失值、重复值、错误或不需要的格式等,在这种混乱的数据上运行实验会导致错误的结果。因此,在将数据输入模型之前,有必要对数据进行准备,这种通过识别和解决潜在的错误、不准确性和不一致性来准备数据的做法被称为数据清洗。
本文将使用著名的鸢尾花数据集进行操作。鸢尾花数据集包含三个品种的鸢尾花的四个特征测量值:萼片长度、萼片宽度、花瓣长度和花瓣宽度。本文将使用以下库:
-
Pandas:用于数据处理和分析的强大库
-
Scikit-learn:提供数据预处理和机器学习的工具
1. 加载数据集
使用Pandas
的read_csv()
函数加载鸢尾花数据集:
column_names = ['id', 'sepal_length', 'sepal_width', 'petal_length', 'petal_width', 'species']
iris_data = pd.read_csv('data/Iris.csv', names= column_names, header=0)
iris_data.head()
输出:
id | sepal_length | sepal_width | petal_length | petal_width | species |
---|---|---|---|---|---|
1 | 5.1 | 3.5 | 1.4 | 0.2 | Iris-setosa |
2 | 4.9 | 3.0 | 1.4 | 0.2 | Iris-setosa |
3 | 4.7 | 3.2 | 1.3 | 0.2 | Iris-setosa |
4 | 4.6 | 3.1 | 1.5 | 0.2 | Iris-setosa |
5 | 5.0 | 3.6 | 1.4 | 0.2 | Iris-setosa |
参数header=0
表示CSV文件的第一行包含列名(标题)。
2. 探索数据集
为了深入了解数据集的基本信息,本文将使用pandas
的内置函数打印一些基本信息:
print(iris_data.info())
print(iris_data.describe())
输出:
RangeIndex: 150 entries, 0 to 149
Data columns (total 6 columns):# 列名 非空计数 类型
--- ------ -------------- ----- 0 id 150 non-null int64 1 sepal_length 150 non-null float642 sepal_width 150 non-null float643 petal_length 150 non-null float644 petal_width 150 non-null float645 species 150 non-null object
dtypes: float64(4), int64(1), object(1)
memory usage: 7.2+ KB
None
iris_data.describe()
的输出结果
info()
函数有助于了解数据帧的整体结构、每列中非空值的数量以及内存使用情况,而汇总统计信息则提供了数据集中数值特征的概览。
3. 检查类别分布
这是了解分类列中类别分布情况的重要步骤,对于分类任务来说非常重要,可以使用Pandas中的value_counts()
函数来执行此步骤。
print(iris_data['species'].value_counts())
输出:
Iris-setosa 50
Iris-versicolor 50
Iris-virginica 50
Name: species, dtype: int64
输出的结果显示,数据集是平衡的,每个品种的代表数量相等,这为所有3个类别进行公平评估和比较奠定了基础。
4. 删除缺失值
由于从info()
方法明显可见本文的数据中有5列没有缺失值,因此本文将跳过此步骤。但如果遇到任何缺失值,可以使用以下命令处理它们:
iris_data.dropna(inplace=True)
5. 删除重复值
重复值可能会扭曲我们的分析结果,因此本文会从数据集中删除它们。首先使用下面的命令检查是否存在重复值:
duplicate_rows = iris_data.duplicated()
print("Number of duplicate rows:", duplicate_rows.sum())
输出:
Number of duplicate rows: 0
本文的数据集中没有重复值。不过,如果有重复值,可以使用drop_duplicates()
函数将其删除:
iris_data.drop_duplicates(inplace=True)
6. 独热编码
对于分类分析,本文将对品种列进行独热编码。由于机器学习算法更适合处理数值数据,所以本文进行独热编码这一步骤。独热编码过程将分类变量转换为二进制(0
或1
)格式。
encoded_species = pd.get_dummies(iris_data['species'], prefix='species', drop_first=False).astype('int')
iris_data = pd.concat([iris_data, encoded_species], axis=1)
iris_data.drop(columns=['species'], inplace=True)
7. 浮点数列的归一化
归一化是将数值特征缩放为均值为0、标准差为1的过程,这一过程旨在确保各特征对分析的贡献相等。本文将对浮点数列进行归一化,以便进行一致的缩放。
from sklearn.preprocessing import StandardScalerscaler = StandardScaler()
cols_to_normalize = ['sepal_length', 'sepal_width', 'petal_length', 'petal_width']
scaled_data = scaler.fit(iris_data[cols_to_normalize])
iris_data[cols_to_normalize] = scaler.transform(iris_data[cols_to_normalize])
归一化后的iris_data.describe()输出结果
8. 保存清洗后的数据集
将清洗后的数据集保存到新的CSV文件中。
iris_data.to_csv('cleaned_iris.csv', index=False)
如果完成上述步骤,你已成功使用Pandas清洗了第一个数据集。在处理复杂数据集时,可能会遇到其他挑战,然而本文介绍的基本技术将帮助你入门,并为开始数据分析做好准备。
相关文章:

学会使用Pandas进行数据清洗
大家好,如果你对数据科学感兴趣,那么数据清洗可能对你来说是一个熟悉的术语,本文将向你介绍使用Pandas进行数据清洗的过程。我们的数据通常来自多个资源,而且并不干净,它可能包含缺失值、重复值、错误或不需要的格式等…...

Stable Diffusion WebUI扩展a1111-sd-webui-tagcomplete之Booru风格Tag自动补全功能详细介绍
安装地址 直接附上地址先: Ranting8323 / A1111 Sd Webui Tagcomplete GitCodeGitCode——开源代码托管平台,独立第三方开源社区,Git/Github/Gitlabhttps://gitcode.net/ranting8323/a1111-sd-webui-tagcomplete.git上面是GitCode的地址,下面是GitHub的地址,根据自身情…...
Linux中iostat命令
iostat命令是IO性能分析的常用工具,其是input/output statistics的缩写。 一、安装 yum install sysstat -y二、参数说明 -c: 显示CPU使用情况-d: 显示磁盘使用情况--dec{ 0 | 1 | 2 }: 指定要使用的小数位数,默认为 2-g GROUP_NAME { DEVICE [...] | A…...

Pandas数据处理分析系列3-数据如何预览
Pandas-数据预览 Pandas 导入数据后,我们通常需要对数据进行预览,以便更好的进行数据分析。常见数据预览的方法如下: ①head() 方法 功能:读取数据的前几行,默认显示前5行 语法结构:df.head(行数) df1=pd.read_excel("销售表.xlsx",sheet_name="手机销…...
【汇编语言-王爽】第二章:寄存器
知识点 (一)寄存器 一个典型的CPU由运算器、控制器、寄存器等器件构成,这些器件靠内部总线相连。8086CPU有14个寄存器:AX、BX、CX、DX、SI、DI、SP、BP、IP、CS、SS、DS、ES、PSW。其中AX、BX、CX、DX为通用寄存器,可…...

5G学习笔记之5G频谱
参考:《5G NR通信标准》1. 5G频谱 1G和2G移动业务的频段主要在800MHz~900MHz,存在少数在更高或者更低频段;3G和4G的频段主要在450MHz ~ 6GHz;5G主要是410MHz ~ 6GHz,以及24GHz ~ 52GHz。 5G频谱跨度较大,可…...

CSS 浮动布局
本文参考 https://blog.csdn.net/ZhangJiWei_2019/article/details/114669722 文档流简介 正常文档流 正常文档流,又称为“普通文档流”或“普通流”,也就是W3C标准所说的“normal flow”。 我们先来看一下正常文档流的简单定义:正常文档…...

CentOS 系统安装和使用Docker服务
系统环境 使用下面的命令,可以查看CentOS系统的版本。 lsb_release -a结果: 说明我的系统是7.9.2009版本的 安装Docker服务 依次执行下面的指令: yum install -y yum-utilsyum install -y docker即可安装docker服务 如果这样安装不成功…...

Docker-镜像的备份迁移及私有仓库的搭建
一、Docker-备份与迁移 A服务器系统配置 B服务器系统配置 1.用命令将容器保存为镜像。 案例,将A服务器的Docker容器迁移到另外一台服务器B,A服务器的容器配置过对应的文件,不想在B服务器重新搭建,可以使用该案例。 docker c…...

SQL数据库管理工具RazorSQL mac中文版特点与功能
RazorSQL mac是一款功能强大的SQL数据库管理工具,它支持多种数据库,包括MySQL、Oracle、Microsoft SQL Server、SQLite、PostgreSQL等。 RazorSQL mac 软件特点和功能 多种数据库支持:RazorSQL支持多种数据库,用户可以通过一个工…...
Unigui可以使用WebSocket进行客户端之间的实时互相发消息
Unigui可以使用WebSocket进行客户端之间的实时互相发消息。WebSocket是一种支持双向通信的网络协议,可以使客户端和服务器之间实时地进行数据交换。 实现步骤: 1. 在Unigui项目中添加WebSocket组件。 2. 在WebModule的OnCreate事件中开启WebSocket服务。 proced…...

Win32 简单日志实现
简单实现日志保存, 支持设置日志文件数量, 单个日志文件大小上限, 自动超时保存日志, 日志缓存超限保存 CLogUtils.h #pragma once#include <string> #include <windows.h> #include <vector> #include <map> #include <mutex> #include <tc…...
保姆级阿里云ESC服务器安装nodejs或Linux安装nodejs
1. 创建node文件夹 默认 /opt 下边 /opt/node 也可建到其他地方,如/usr/local/node 等 创建后切换到文件夹下 cd /opt/node cd /opt/node2. 下载node并解压 使用命令下载node wget https://nodejs.org/dist/v18.12.0/node-v18.12.0-linux-x64.tar.xz wget https…...

《动手学深度学习 Pytorch版》 9.3 深度循环神经网络
将多层循环神经网络堆叠在一起,通过对几个简单层的组合,产生一个灵活的机制。其中的数据可能与不同层的堆叠有关。 9.3.1 函数依赖关系 将深度架构中的函数依赖关系形式化,第 l l l 个隐藏层的隐状态表达式为: H t ( l ) ϕ l …...

2023-10-19 LeetCode每日一题(同积元组)
2023-10-19每日一题 一、题目编号 1726. 同积元组二、题目链接 点击跳转到题目位置 三、题目描述 给你一个由 不同 正整数组成的数组 nums ,请你返回满足 a * b c * d 的元组 (a, b, c, d) 的数量。其中 a、b、c 和 d 都是 nums 中的元素,且 a ! b…...

GEE:绘制土地利用类型面积分布柱状图
作者:CSDN @ _养乐多_ 本文记录了,在 Google Earth Engine (GEE)中进行随机森林分类后绘制不同类型面积分布柱状图的代码片段。 完整代码请看博客《GEE:随机森林分类教程(样本制作、特征添加、训练、精度、参数优化、贡献度、统计面积)》 柱状图效果如下所示, 文章目…...

2021年03月 Python(三级)真题解析#中国电子学会#全国青少年软件编程等级考试
Python编程(1~6级)全部真题・点这里 一、单选题(共25题,每题2分,共50分) 第1题 下列代码的输出结果是?( ) x 0x10print(x)A:2 B:8 Cÿ…...

全网最丑焊锡教程(仅排针焊接心得)
一直以来玩各种开发板,焊接水平太差始终是阻碍我买性价比高的板子的最大原因。淘宝上好多芯片搭载上肥猪流板子是不包排针焊接的。终于下定决心要克服这个困难。不过,只是会焊接排针在高手面前最好不要说自己会焊锡,这应该是两码事。 首先上…...

重测序基因组:Pi核酸多样性计算
如何计算核酸多样性 Pi 本期笔记分享关于核酸多样性pi计算的方法和相关技巧,主要包括原始数据整理、分组文件设置、计算原理、操作流程、可视化绘图等步骤。 基因组Pi核酸多样性(Pi nucleic acid diversity)是一种遗传学研究中用来描述种群内…...

C++学习之多态详解
目录 多态的实现 例题 重载 重写 重定义的区别 抽象类 多态实现原理 多态的实现 C中的多态是指,当类之间存在层次结构,并且类之间是通过继承关联时,就会用到多态。多态意味着调用成员函数时,会根据调用函数的对象的类型来执…...

Python:操作 Excel 折叠
💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 Python 操作 Excel 系列 读取单元格数据按行写入设置行高和列宽自动调整行高和列宽水平…...

SCAU期末笔记 - 数据分析与数据挖掘题库解析
这门怎么题库答案不全啊日 来简单学一下子来 一、选择题(可多选) 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘:专注于发现数据中…...

渗透实战PortSwigger靶场-XSS Lab 14:大多数标签和属性被阻止
<script>标签被拦截 我们需要把全部可用的 tag 和 event 进行暴力破解 XSS cheat sheet: https://portswigger.net/web-security/cross-site-scripting/cheat-sheet 通过爆破发现body可以用 再把全部 events 放进去爆破 这些 event 全部可用 <body onres…...
条件运算符
C中的三目运算符(也称条件运算符,英文:ternary operator)是一种简洁的条件选择语句,语法如下: 条件表达式 ? 表达式1 : 表达式2• 如果“条件表达式”为true,则整个表达式的结果为“表达式1”…...

学习STC51单片机31(芯片为STC89C52RCRC)OLED显示屏1
每日一言 生活的美好,总是藏在那些你咬牙坚持的日子里。 硬件:OLED 以后要用到OLED的时候找到这个文件 OLED的设备地址 SSD1306"SSD" 是品牌缩写,"1306" 是产品编号。 驱动 OLED 屏幕的 IIC 总线数据传输格式 示意图 …...

NFT模式:数字资产确权与链游经济系统构建
NFT模式:数字资产确权与链游经济系统构建 ——从技术架构到可持续生态的范式革命 一、确权技术革新:构建可信数字资产基石 1. 区块链底层架构的进化 跨链互操作协议:基于LayerZero协议实现以太坊、Solana等公链资产互通,通过零知…...

嵌入式学习笔记DAY33(网络编程——TCP)
一、网络架构 C/S (client/server 客户端/服务器):由客户端和服务器端两个部分组成。客户端通常是用户使用的应用程序,负责提供用户界面和交互逻辑 ,接收用户输入,向服务器发送请求,并展示服务…...
Java求职者面试指南:计算机基础与源码原理深度解析
Java求职者面试指南:计算机基础与源码原理深度解析 第一轮提问:基础概念问题 1. 请解释什么是进程和线程的区别? 面试官:进程是程序的一次执行过程,是系统进行资源分配和调度的基本单位;而线程是进程中的…...

搭建DNS域名解析服务器(正向解析资源文件)
正向解析资源文件 1)准备工作 服务端及客户端都关闭安全软件 [rootlocalhost ~]# systemctl stop firewalld [rootlocalhost ~]# setenforce 0 2)服务端安装软件:bind 1.配置yum源 [rootlocalhost ~]# cat /etc/yum.repos.d/base.repo [Base…...
Redis:现代应用开发的高效内存数据存储利器
一、Redis的起源与发展 Redis最初由意大利程序员Salvatore Sanfilippo在2009年开发,其初衷是为了满足他自己的一个项目需求,即需要一个高性能的键值存储系统来解决传统数据库在高并发场景下的性能瓶颈。随着项目的开源,Redis凭借其简单易用、…...