当前位置: 首页 > news >正文

学会使用Pandas进行数据清洗

大家好,如果你对数据科学感兴趣,那么数据清洗可能对你来说是一个熟悉的术语,本文将向你介绍使用Pandas进行数据清洗的过程。我们的数据通常来自多个资源,而且并不干净,它可能包含缺失值、重复值、错误或不需要的格式等,在这种混乱的数据上运行实验会导致错误的结果。因此,在将数据输入模型之前,有必要对数据进行准备,这种通过识别和解决潜在的错误、不准确性和不一致性来准备数据的做法被称为数据清洗。

本文将使用著名的鸢尾花数据集进行操作。鸢尾花数据集包含三个品种的鸢尾花的四个特征测量值:萼片长度、萼片宽度、花瓣长度和花瓣宽度。本文将使用以下库:

  • Pandas:用于数据处理和分析的强大库

  • Scikit-learn:提供数据预处理和机器学习的工具

1. 加载数据集

使用Pandasread_csv()函数加载鸢尾花数据集:

column_names = ['id', 'sepal_length', 'sepal_width', 'petal_length', 'petal_width', 'species']
iris_data = pd.read_csv('data/Iris.csv', names= column_names, header=0)
iris_data.head()

输出:

idsepal_lengthsepal_widthpetal_lengthpetal_widthspecies
15.13.51.40.2Iris-setosa
24.93.01.40.2Iris-setosa
34.73.21.30.2Iris-setosa
44.63.11.50.2Iris-setosa
55.03.61.40.2Iris-setosa

参数header=0表示CSV文件的第一行包含列名(标题)。

2. 探索数据集

为了深入了解数据集的基本信息,本文将使用pandas的内置函数打印一些基本信息:

print(iris_data.info())
print(iris_data.describe())

输出:

RangeIndex: 150 entries, 0 to 149
Data columns (total 6 columns):#   列名           非空计数         类型  
---  ------        --------------  -----  0   id            150 non-null    int64  1   sepal_length  150 non-null    float642   sepal_width   150 non-null    float643   petal_length  150 non-null    float644   petal_width   150 non-null    float645   species       150 non-null    object 
dtypes: float64(4), int64(1), object(1)
memory usage: 7.2+ KB
None

图片

iris_data.describe()的输出结果

info()函数有助于了解数据帧的整体结构、每列中非空值的数量以及内存使用情况,而汇总统计信息则提供了数据集中数值特征的概览。

3. 检查类别分布

这是了解分类列中类别分布情况的重要步骤,对于分类任务来说非常重要,可以使用Pandas中的value_counts()函数来执行此步骤。

print(iris_data['species'].value_counts())

输出:

Iris-setosa        50
Iris-versicolor    50
Iris-virginica     50
Name: species, dtype: int64

输出的结果显示,数据集是平衡的,每个品种的代表数量相等,这为所有3个类别进行公平评估和比较奠定了基础。

4. 删除缺失值

由于从info()方法明显可见本文的数据中有5列没有缺失值,因此本文将跳过此步骤。但如果遇到任何缺失值,可以使用以下命令处理它们:

iris_data.dropna(inplace=True)

5. 删除重复值

重复值可能会扭曲我们的分析结果,因此本文会从数据集中删除它们。首先使用下面的命令检查是否存在重复值:

duplicate_rows = iris_data.duplicated()
print("Number of duplicate rows:", duplicate_rows.sum())

输出:

Number of duplicate rows: 0

本文的数据集中没有重复值。不过,如果有重复值,可以使用drop_duplicates()函数将其删除:

iris_data.drop_duplicates(inplace=True)

6. 独热编码

对于分类分析,本文将对品种列进行独热编码。由于机器学习算法更适合处理数值数据,所以本文进行独热编码这一步骤。独热编码过程将分类变量转换为二进制(01)格式。

encoded_species = pd.get_dummies(iris_data['species'], prefix='species', drop_first=False).astype('int')
iris_data = pd.concat([iris_data, encoded_species], axis=1)
iris_data.drop(columns=['species'], inplace=True)

图片

7. 浮点数列的归一化

归一化是将数值特征缩放为均值为0、标准差为1的过程,这一过程旨在确保各特征对分析的贡献相等。本文将对浮点数列进行归一化,以便进行一致的缩放。

from sklearn.preprocessing import StandardScalerscaler = StandardScaler()
cols_to_normalize = ['sepal_length', 'sepal_width', 'petal_length', 'petal_width']
scaled_data = scaler.fit(iris_data[cols_to_normalize])
iris_data[cols_to_normalize] = scaler.transform(iris_data[cols_to_normalize])

图片

归一化后的iris_data.describe()输出结果

8. 保存清洗后的数据集

将清洗后的数据集保存到新的CSV文件中。

iris_data.to_csv('cleaned_iris.csv', index=False)

如果完成上述步骤,你已成功使用Pandas清洗了第一个数据集。在处理复杂数据集时,可能会遇到其他挑战,然而本文介绍的基本技术将帮助你入门,并为开始数据分析做好准备。

相关文章:

学会使用Pandas进行数据清洗

大家好,如果你对数据科学感兴趣,那么数据清洗可能对你来说是一个熟悉的术语,本文将向你介绍使用Pandas进行数据清洗的过程。我们的数据通常来自多个资源,而且并不干净,它可能包含缺失值、重复值、错误或不需要的格式等…...

Stable Diffusion WebUI扩展a1111-sd-webui-tagcomplete之Booru风格Tag自动补全功能详细介绍

安装地址 直接附上地址先: Ranting8323 / A1111 Sd Webui Tagcomplete GitCodeGitCode——开源代码托管平台,独立第三方开源社区,Git/Github/Gitlabhttps://gitcode.net/ranting8323/a1111-sd-webui-tagcomplete.git上面是GitCode的地址,下面是GitHub的地址,根据自身情…...

Linux中iostat命令

iostat命令是IO性能分析的常用工具,其是input/output statistics的缩写。 一、安装 yum install sysstat -y二、参数说明 -c: 显示CPU使用情况-d: 显示磁盘使用情况--dec{ 0 | 1 | 2 }: 指定要使用的小数位数,默认为 2-g GROUP_NAME { DEVICE [...] | A…...

Pandas数据处理分析系列3-数据如何预览

Pandas-数据预览 Pandas 导入数据后,我们通常需要对数据进行预览,以便更好的进行数据分析。常见数据预览的方法如下: ①head() 方法 功能:读取数据的前几行,默认显示前5行 语法结构:df.head(行数) df1=pd.read_excel("销售表.xlsx",sheet_name="手机销…...

【汇编语言-王爽】第二章:寄存器

知识点 (一)寄存器 一个典型的CPU由运算器、控制器、寄存器等器件构成,这些器件靠内部总线相连。8086CPU有14个寄存器:AX、BX、CX、DX、SI、DI、SP、BP、IP、CS、SS、DS、ES、PSW。其中AX、BX、CX、DX为通用寄存器,可…...

5G学习笔记之5G频谱

参考:《5G NR通信标准》1. 5G频谱 1G和2G移动业务的频段主要在800MHz~900MHz,存在少数在更高或者更低频段;3G和4G的频段主要在450MHz ~ 6GHz;5G主要是410MHz ~ 6GHz,以及24GHz ~ 52GHz。 5G频谱跨度较大,可…...

CSS 浮动布局

本文参考 https://blog.csdn.net/ZhangJiWei_2019/article/details/114669722 文档流简介 正常文档流 正常文档流,又称为“普通文档流”或“普通流”,也就是W3C标准所说的“normal flow”。 我们先来看一下正常文档流的简单定义:正常文档…...

CentOS 系统安装和使用Docker服务

系统环境 使用下面的命令,可以查看CentOS系统的版本。 lsb_release -a结果: 说明我的系统是7.9.2009版本的 安装Docker服务 依次执行下面的指令: yum install -y yum-utilsyum install -y docker即可安装docker服务 如果这样安装不成功…...

Docker-镜像的备份迁移及私有仓库的搭建

一、Docker-备份与迁移 A服务器系统配置 B服务器系统配置 1.用命令将容器保存为镜像。 案例,将A服务器的Docker容器迁移到另外一台服务器B,A服务器的容器配置过对应的文件,不想在B服务器重新搭建,可以使用该案例。 docker c…...

SQL数据库管理工具RazorSQL mac中文版特点与功能

RazorSQL mac是一款功能强大的SQL数据库管理工具,它支持多种数据库,包括MySQL、Oracle、Microsoft SQL Server、SQLite、PostgreSQL等。 RazorSQL mac 软件特点和功能 多种数据库支持:RazorSQL支持多种数据库,用户可以通过一个工…...

Unigui可以使用WebSocket进行客户端之间的实时互相发消息

Unigui可以使用WebSocket进行客户端之间的实时互相发消息。WebSocket是一种支持双向通信的网络协议,可以使客户端和服务器之间实时地进行数据交换。 实现步骤: 1. 在Unigui项目中添加WebSocket组件。 2. 在WebModule的OnCreate事件中开启WebSocket服务。 proced…...

Win32 简单日志实现

简单实现日志保存, 支持设置日志文件数量, 单个日志文件大小上限, 自动超时保存日志, 日志缓存超限保存 CLogUtils.h #pragma once#include <string> #include <windows.h> #include <vector> #include <map> #include <mutex> #include <tc…...

保姆级阿里云ESC服务器安装nodejs或Linux安装nodejs

1. 创建node文件夹 默认 /opt 下边 /opt/node 也可建到其他地方&#xff0c;如/usr/local/node 等 创建后切换到文件夹下 cd /opt/node cd /opt/node2. 下载node并解压 使用命令下载node wget https://nodejs.org/dist/v18.12.0/node-v18.12.0-linux-x64.tar.xz wget https…...

《动手学深度学习 Pytorch版》 9.3 深度循环神经网络

将多层循环神经网络堆叠在一起&#xff0c;通过对几个简单层的组合&#xff0c;产生一个灵活的机制。其中的数据可能与不同层的堆叠有关。 9.3.1 函数依赖关系 将深度架构中的函数依赖关系形式化&#xff0c;第 l l l 个隐藏层的隐状态表达式为&#xff1a; H t ( l ) ϕ l …...

2023-10-19 LeetCode每日一题(同积元组)

2023-10-19每日一题 一、题目编号 1726. 同积元组二、题目链接 点击跳转到题目位置 三、题目描述 给你一个由 不同 正整数组成的数组 nums &#xff0c;请你返回满足 a * b c * d 的元组 (a, b, c, d) 的数量。其中 a、b、c 和 d 都是 nums 中的元素&#xff0c;且 a ! b…...

GEE:绘制土地利用类型面积分布柱状图

作者:CSDN @ _养乐多_ 本文记录了,在 Google Earth Engine (GEE)中进行随机森林分类后绘制不同类型面积分布柱状图的代码片段。 完整代码请看博客《GEE:随机森林分类教程(样本制作、特征添加、训练、精度、参数优化、贡献度、统计面积)》 柱状图效果如下所示, 文章目…...

2021年03月 Python(三级)真题解析#中国电子学会#全国青少年软件编程等级考试

Python编程&#xff08;1~6级&#xff09;全部真题・点这里 一、单选题&#xff08;共25题&#xff0c;每题2分&#xff0c;共50分&#xff09; 第1题 下列代码的输出结果是&#xff1f;&#xff08; &#xff09; x 0x10print(x)A&#xff1a;2 B&#xff1a;8 C&#xff…...

全网最丑焊锡教程(仅排针焊接心得)

一直以来玩各种开发板&#xff0c;焊接水平太差始终是阻碍我买性价比高的板子的最大原因。淘宝上好多芯片搭载上肥猪流板子是不包排针焊接的。终于下定决心要克服这个困难。不过&#xff0c;只是会焊接排针在高手面前最好不要说自己会焊锡&#xff0c;这应该是两码事。 首先上…...

重测序基因组:Pi核酸多样性计算

如何计算核酸多样性 Pi 本期笔记分享关于核酸多样性pi计算的方法和相关技巧&#xff0c;主要包括原始数据整理、分组文件设置、计算原理、操作流程、可视化绘图等步骤。 基因组Pi核酸多样性&#xff08;Pi nucleic acid diversity&#xff09;是一种遗传学研究中用来描述种群内…...

C++学习之多态详解

目录 多态的实现 例题 重载 重写 重定义的区别 抽象类 多态实现原理 多态的实现 C中的多态是指&#xff0c;当类之间存在层次结构&#xff0c;并且类之间是通过继承关联时&#xff0c;就会用到多态。多态意味着调用成员函数时&#xff0c;会根据调用函数的对象的类型来执…...

Android Wi-Fi 连接失败日志分析

1. Android wifi 关键日志总结 (1) Wi-Fi 断开 (CTRL-EVENT-DISCONNECTED reason3) 日志相关部分&#xff1a; 06-05 10:48:40.987 943 943 I wpa_supplicant: wlan0: CTRL-EVENT-DISCONNECTED bssid44:9b:c1:57:a8:90 reason3 locally_generated1解析&#xff1a; CTR…...

进程地址空间(比特课总结)

一、进程地址空间 1. 环境变量 1 &#xff09;⽤户级环境变量与系统级环境变量 全局属性&#xff1a;环境变量具有全局属性&#xff0c;会被⼦进程继承。例如当bash启动⼦进程时&#xff0c;环 境变量会⾃动传递给⼦进程。 本地变量限制&#xff1a;本地变量只在当前进程(ba…...

MySQL 隔离级别:脏读、幻读及不可重复读的原理与示例

一、MySQL 隔离级别 MySQL 提供了四种隔离级别,用于控制事务之间的并发访问以及数据的可见性,不同隔离级别对脏读、幻读、不可重复读这几种并发数据问题有着不同的处理方式,具体如下: 隔离级别脏读不可重复读幻读性能特点及锁机制读未提交(READ UNCOMMITTED)允许出现允许…...

STM32F4基本定时器使用和原理详解

STM32F4基本定时器使用和原理详解 前言如何确定定时器挂载在哪条时钟线上配置及使用方法参数配置PrescalerCounter ModeCounter Periodauto-reload preloadTrigger Event Selection 中断配置生成的代码及使用方法初始化代码基本定时器触发DCA或者ADC的代码讲解中断代码定时启动…...

五年级数学知识边界总结思考-下册

目录 一、背景二、过程1.观察物体小学五年级下册“观察物体”知识点详解&#xff1a;由来、作用与意义**一、知识点核心内容****二、知识点的由来&#xff1a;从生活实践到数学抽象****三、知识的作用&#xff1a;解决实际问题的工具****四、学习的意义&#xff1a;培养核心素养…...

python如何将word的doc另存为docx

将 DOCX 文件另存为 DOCX 格式&#xff08;Python 实现&#xff09; 在 Python 中&#xff0c;你可以使用 python-docx 库来操作 Word 文档。不过需要注意的是&#xff0c;.doc 是旧的 Word 格式&#xff0c;而 .docx 是新的基于 XML 的格式。python-docx 只能处理 .docx 格式…...

相机Camera日志分析之三十一:高通Camx HAL十种流程基础分析关键字汇总(后续持续更新中)

【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了:有对最普通的场景进行各个日志注释讲解,但相机场景太多,日志差异也巨大。后面将展示各种场景下的日志。 通过notepad++打开场景下的日志,通过下列分类关键字搜索,即可清晰的分析不同场景的相机运行流程差异…...

用docker来安装部署freeswitch记录

今天刚才测试一个callcenter的项目&#xff0c;所以尝试安装freeswitch 1、使用轩辕镜像 - 中国开发者首选的专业 Docker 镜像加速服务平台 编辑下面/etc/docker/daemon.json文件为 {"registry-mirrors": ["https://docker.xuanyuan.me"] }同时可以进入轩…...

3-11单元格区域边界定位(End属性)学习笔记

返回一个Range 对象&#xff0c;只读。该对象代表包含源区域的区域上端下端左端右端的最后一个单元格。等同于按键 End 向上键(End(xlUp))、End向下键(End(xlDown))、End向左键(End(xlToLeft)End向右键(End(xlToRight)) 注意&#xff1a;它移动的位置必须是相连的有内容的单元格…...

DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”

目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...