订单30分钟自动关闭的五种解决方案
1 前言
在开发中,往往会遇到一些关于延时任务的需求。例如
- 生成订单30分钟未支付,则自动取消
- 生成订单60秒后,给用户发短信
对上述的任务,我们给一个专业的名字来形容,那就是延时任务 。那么这里就会产生一个问题,这个延时任务 和定时任务 的区别究竟在哪里呢?一共有如下几点区别
- 定时任务有明确的触发时间,延时任务没有
- 定时任务有执行周期,而延时任务在某事件触发后一段时间内执行,没有执行周期
- 定时任务一般执行的是批处理操作是多个任务,而延时任务一般是单个任务
下面,我们以判断订单是否超时为例,进行方案分析
2 方案一:数据库轮询
2.1 思路
该方案通常是在小型项目中使用,即通过一个线程定时的去扫描数据库,通过订单时间来判断是否有超时的订单,然后进行update或delete等操作
2.2 实现
博主当年早期是用quartz来实现的,简单介绍一下 maven项目引入一个依赖如下所示
<dependency><groupId>org.quartz-scheduler</groupId><artifactId>quartz</artifactId><version>2.2.2</version>
</dependency>
调用Demo类MyJob如下所示
package com.rjzheng.delay1;import org.quartz.JobBuilder;
import org.quartz.JobDetail;
import org.quartz.Scheduler;
import org.quartz.SchedulerException;
import org.quartz.SchedulerFactory;
import org.quartz.SimpleScheduleBuilder;
import org.quartz.Trigger;
import org.quartz.TriggerBuilder;
import org.quartz.impl.StdSchedulerFactory;
import org.quartz.Job;
import org.quartz.JobExecutionContext;
import org.quartz.JobExecutionException;public class MyJob implements Job {public void execute(JobExecutionContext context)throws JobExecutionException {System.out.println("要去数据库扫描啦。。。");}public static void main(String[] args) throws Exception {// 创建任务JobDetail jobDetail = JobBuilder.newJob(MyJob.class).withIdentity("job1", "group1").build();// 创建触发器 每3秒钟执行一次Trigger trigger = TriggerBuilder.newTrigger().withIdentity("trigger1", "group3").withSchedule(SimpleScheduleBuilder.simpleSchedule().withIntervalInSeconds(3).repeatForever()).build();Scheduler scheduler = new StdSchedulerFactory().getScheduler();// 将任务及其触发器放入调度器scheduler.scheduleJob(jobDetail, trigger);// 调度器开始调度任务scheduler.start();}
}
运行代码,可发现每隔3秒,输出如下
要去数据库扫描啦。。。
2.3 优缺点
优点:
- 简单易行,支持集群操作
缺点:
- 对服务器内存消耗大
- 存在延迟,比如你每隔3分钟扫描一次,那最坏的延迟时间就是3分钟
- 假设你的订单有几千万条,每隔几分钟这样扫描一次,数据库损耗极大
3 方案二:JDK的延迟队列
3.1 思路
该方案是利用JDK自带的DelayQueue来实现,这是一个无界阻塞队列,该队列只有在延迟期满的时候才能从中获取元素,放入DelayQueue中的对象,是必须实现Delayed接口的。
DelayedQueue实现工作流程如下图所示
其中
- poll():获取并移除队列的超时元素,没有则返回空
- take():获取并移除队列的超时元素,如果没有则wait当前线程,直到有元素满足超时条件,返回结果。
3.2 实现
定义一个类OrderDelay实现Delayed,代码如下
package com.rjzheng.delay2;import java.util.concurrent.Delayed;
import java.util.concurrent.TimeUnit;public class OrderDelay implements Delayed {private String orderId;private long timeout;OrderDelay(String orderId, long timeout) {this.orderId = orderId;this.timeout = timeout + System.nanoTime();}public int compareTo(Delayed other) {if (other == this)return 0;OrderDelay t = (OrderDelay) other;long d = (getDelay(TimeUnit.NANOSECONDS) - t.getDelay(TimeUnit.NANOSECONDS));return (d == 0) ? 0 : ((d < 0) ? -1 : 1);}// 返回距离你自定义的超时时间还有多少public long getDelay(TimeUnit unit) {return unit.convert(timeout - System.nanoTime(), TimeUnit.NANOSECONDS);}void print() {System.out.println(orderId+"编号的订单要删除啦。。。。");}
}
运行的测试Demo为,我们设定延迟时间为3秒
package com.rjzheng.delay2;import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.DelayQueue;
import java.util.concurrent.TimeUnit;public class DelayQueueDemo {public static void main(String[] args) {// TODO Auto-generated method stubList<String> list = new ArrayList<String>();list.add("00000001");list.add("00000002");list.add("00000003");list.add("00000004");list.add("00000005");DelayQueue<OrderDelay> queue = new DelayQueue<OrderDelay>();long start = System.currentTimeMillis();for(int i = 0;i<5;i++){//延迟三秒取出queue.put(new OrderDelay(list.get(i),TimeUnit.NANOSECONDS.convert(3, TimeUnit.SECONDS)));try {queue.take().print();System.out.println("After " +(System.currentTimeMillis()-start) + " MilliSeconds");} catch (InterruptedException e) {// TODO Auto-generated catch blocke.printStackTrace();}}}}
输出如下
00000001编号的订单要删除啦。。。。
After 3003 MilliSeconds
00000002编号的订单要删除啦。。。。
After 6006 MilliSeconds
00000003编号的订单要删除啦。。。。
After 9006 MilliSeconds
00000004编号的订单要删除啦。。。。
After 12008 MilliSeconds
00000005编号的订单要删除啦。。。。
After 15009 MilliSeconds
可以看到都是延迟3秒,订单被删除
3.3 优缺点
优点:
- 效率高,任务触发时间延迟低。
缺点:
- 服务器重启后,数据全部消失,怕宕机
- 集群扩展相当麻烦
- 因为内存条件限制的原因,比如下单未付款的订单数太多,那么很容易就出现OOM异常
- 代码复杂度较高
4 方案三:时间轮算法
4.1 思路
先上一张时间轮的图(这图到处都是啦)
时间轮算法可以类比于时钟,如上图箭头(指针)按某一个方向按固定频率轮动,每一次跳动称为一个 tick。这样可以看出定时轮由个3个重要的属性参数,ticksPerWheel(一轮的tick数),tickDuration(一个tick的持续时间)以及 timeUnit(时间单位),例如当ticksPerWheel=60,tickDuration=1,timeUnit=秒,这就和现实中的始终的秒针走动完全类似了。
如果当前指针指在1上面,我有一个任务需要4秒以后执行,那么这个执行的线程回调或者消息将会被放在5上。那如果需要在20秒之后执行怎么办,由于这个环形结构槽数只到8,如果要20秒,指针需要多转2圈。位置是在2圈之后的5上面(20 % 8 + 1)
4.2 实现
我们用Netty的HashedWheelTimer来实现 给Pom加上下面的依赖
<dependency><groupId>io.netty</groupId><artifactId>netty-all</artifactId><version>4.1.24.Final</version>
</dependency>
测试代码HashedWheelTimerTest如下所示
package com.rjzheng.delay3;import io.netty.util.HashedWheelTimer;
import io.netty.util.Timeout;
import io.netty.util.Timer;
import io.netty.util.TimerTask;import java.util.concurrent.TimeUnit;public class HashedWheelTimerTest {static class MyTimerTask implements TimerTask{boolean flag;public MyTimerTask(boolean flag){this.flag = flag;}public void run(Timeout timeout) throws Exception {// TODO Auto-generated method stubSystem.out.println("要去数据库删除订单了。。。。");this.flag =false;}}public static void main(String[] argv) {MyTimerTask timerTask = new MyTimerTask(true);Timer timer = new HashedWheelTimer();timer.newTimeout(timerTask, 5, TimeUnit.SECONDS);int i = 1;while(timerTask.flag){try {Thread.sleep(1000);} catch (InterruptedException e) {// TODO Auto-generated catch blocke.printStackTrace();}System.out.println(i+"秒过去了");i++;}}
}
输出如下
1秒过去了
2秒过去了
3秒过去了
4秒过去了
5秒过去了
要去数据库删除订单了。。。。
6秒过去了
4.3 优缺点
优点:
- 效率高,任务触发时间延迟时间比delayQueue低,代码复杂度比delayQueue低。
缺点:
- 服务器重启后,数据全部消失,怕宕机
- 集群扩展相当麻烦
- 因为内存条件限制的原因,比如下单未付款的订单数太多,那么很容易就出现OOM异常
5 方案四:redis缓存
5.1 实现一
利用redis的zset,zset是一个有序集合,每一个元素(member)都关联了一个score,通过score排序来取集合中的值
zset常用命令
-
添加元素:ZADD key score member [[score member] [score member] …]
-
按顺序查询元素:ZRANGE key start stop [WITHSCORES]
-
查询元素score:ZSCORE key member
-
移除元素:ZREM key member [member …]
测试如下
> 基于 Spring Cloud Alibaba + Gateway + Nacos + RocketMQ + Vue & Element 实现的后台管理系统 + 用户小程序,支持 RBAC 动态权限、多租户、数据权限、工作流、三方登录、支付、短信、商城等功能
>
> * 项目地址:<https://github.com/YunaiV/yudao-cloud>
> * 视频教程:<https://doc.iocoder.cn/video/># 添加单个元素redis> ZADD page_rank 10 google.com
(integer) 1# 添加多个元素redis> ZADD page_rank 9 baidu.com 8 bing.com
(integer) 2redis> ZRANGE page_rank 0 -1 WITHSCORES
1) "bing.com"
2) "8"
3) "baidu.com"
4) "9"
5) "google.com"
6) "10"# 查询元素的score值
redis> ZSCORE page_rank bing.com
"8"# 移除单个元素redis> ZREM page_rank google.com
(integer) 1redis> ZRANGE page_rank 0 -1 WITHSCORES
1) "bing.com"
2) "8"
3) "baidu.com"
4) "9"
那么如何实现呢?我们将订单超时时间戳与订单号分别设置为score和member,系统扫描第一个元素判断是否超时,具体如下图所示
5.2 实现一
package com.rjzheng.delay4;import java.util.Calendar;
import java.util.Set;import redis.clients.jedis.Jedis;
import redis.clients.jedis.JedisPool;
import redis.clients.jedis.Tuple;public class AppTest {private static final String ADDR = "127.0.0.1";private static final int PORT = 6379;private static JedisPool jedisPool = new JedisPool(ADDR, PORT);public static Jedis getJedis() {return jedisPool.getResource();}//生产者,生成5个订单放进去public void productionDelayMessage(){for(int i=0;i<5;i++){//延迟3秒Calendar cal1 = Calendar.getInstance();cal1.add(Calendar.SECOND, 3);int second3later = (int) (cal1.getTimeInMillis() / 1000);AppTest.getJedis().zadd("OrderId", second3later,"OID0000001"+i);System.out.println(System.currentTimeMillis()+"ms:redis生成了一个订单任务:订单ID为"+"OID0000001"+i);}}//消费者,取订单public void consumerDelayMessage(){Jedis jedis = AppTest.getJedis();while(true){Set<Tuple> items = jedis.zrangeWithScores("OrderId", 0, 1);if(items == null || items.isEmpty()){System.out.println("当前没有等待的任务");try {Thread.sleep(500);} catch (InterruptedException e) {// TODO Auto-generated catch blocke.printStackTrace();}continue;}int score = (int) ((Tuple)items.toArray()[0]).getScore();Calendar cal = Calendar.getInstance();int nowSecond = (int) (cal.getTimeInMillis() / 1000);if(nowSecond >= score){String orderId = ((Tuple)items.toArray()[0]).getElement();jedis.zrem("OrderId", orderId);System.out.println(System.currentTimeMillis() +"ms:redis消费了一个任务:消费的订单OrderId为"+orderId);}}}public static void main(String[] args) {AppTest appTest =new AppTest();appTest.productionDelayMessage();appTest.consumerDelayMessage();}}
此时对应输出如下
1525086085261ms:redis生成了一个订单任务:订单ID为OID00000010
1525086085263ms:redis生成了一个订单任务:订单ID为OID00000011
1525086085266ms:redis生成了一个订单任务:订单ID为OID00000012
1525086085268ms:redis生成了一个订单任务:订单ID为OID00000013
1525086085270ms:redis生成了一个订单任务:订单ID为OID00000014
1525086088000ms:redis消费了一个任务:消费的订单OrderId为OID00000010
1525086088001ms:redis消费了一个任务:消费的订单OrderId为OID00000011
1525086088002ms:redis消费了一个任务:消费的订单OrderId为OID00000012
1525086088003ms:redis消费了一个任务:消费的订单OrderId为OID00000013
1525086088004ms:redis消费了一个任务:消费的订单OrderId为OID00000014
当前没有等待的任务
当前没有等待的任务
当前没有等待的任务
可以看到,几乎都是3秒之后,消费订单。
然而,这一版存在一个致命的硬伤,在高并发条件下,多消费者会取到同一个订单号,我们上测试代码ThreadTest
package com.rjzheng.delay4;import java.util.concurrent.CountDownLatch;public class ThreadTest {private static final int threadNum = 10;private static CountDownLatch cdl = new CountDownLatch(threadNum);static class DelayMessage implements Runnable{public void run() {try {cdl.await();} catch (InterruptedException e) {// TODO Auto-generated catch blocke.printStackTrace();}AppTest appTest =new AppTest();appTest.consumerDelayMessage();}}public static void main(String[] args) {AppTest appTest =new AppTest();appTest.productionDelayMessage();for(int i=0;i<threadNum;i++){new Thread(new DelayMessage()).start();cdl.countDown();}}
}
输出如下所示
1525087157727ms:redis生成了一个订单任务:订单ID为OID00000010
1525087157734ms:redis生成了一个订单任务:订单ID为OID00000011
1525087157738ms:redis生成了一个订单任务:订单ID为OID00000012
1525087157747ms:redis生成了一个订单任务:订单ID为OID00000013
1525087157753ms:redis生成了一个订单任务:订单ID为OID00000014
1525087160009ms:redis消费了一个任务:消费的订单OrderId为OID00000010
1525087160011ms:redis消费了一个任务:消费的订单OrderId为OID00000010
1525087160012ms:redis消费了一个任务:消费的订单OrderId为OID00000010
1525087160022ms:redis消费了一个任务:消费的订单OrderId为OID00000011
1525087160023ms:redis消费了一个任务:消费的订单OrderId为OID00000011
1525087160029ms:redis消费了一个任务:消费的订单OrderId为OID00000011
1525087160038ms:redis消费了一个任务:消费的订单OrderId为OID00000012
1525087160045ms:redis消费了一个任务:消费的订单OrderId为OID00000012
1525087160048ms:redis消费了一个任务:消费的订单OrderId为OID00000012
1525087160053ms:redis消费了一个任务:消费的订单OrderId为OID00000013
1525087160064ms:redis消费了一个任务:消费的订单OrderId为OID00000013
1525087160065ms:redis消费了一个任务:消费的订单OrderId为OID00000014
1525087160069ms:redis消费了一个任务:消费的订单OrderId为OID00000014
当前没有等待的任务
当前没有等待的任务
当前没有等待的任务
当前没有等待的任务
显然,出现了多个线程消费同一个资源的情况。
5.3 解决方案
- 用分布式锁,但是用分布式锁,性能下降了,该方案不细说。
- 对ZREM的返回值进行判断,只有大于0的时候,才消费数据,于是将consumerDelayMessage()方法里的
if(nowSecond >= score){String orderId = ((Tuple)items.toArray()[0]).getElement();jedis.zrem("OrderId", orderId);System.out.println(System.currentTimeMillis()+"ms:redis消费了一个任务:消费的订单OrderId为"+orderId);
}
修改为
if(nowSecond >= score){String orderId = ((Tuple)items.toArray()[0]).getElement();Long num = jedis.zrem("OrderId", orderId);if( num != null && num>0){System.out.println(System.currentTimeMillis()+"ms:redis消费了一个任务:消费的订单OrderId为"+orderId);}
}
在这种修改后,重新运行ThreadTest类,发现输出正常了
5.4 思路二
该方案使用redis的Keyspace Notifications,中文翻译就是键空间机制,就是利用该机制可以在key失效之后,提供一个回调,实际上是redis会给客户端发送一个消息。是需要redis版本2.8以上。
5.5 实现二
在redis.conf中,加入一条配置
notify-keyspace-events Ex
运行代码如下
package com.rjzheng.delay5;import redis.clients.jedis.Jedis;
import redis.clients.jedis.JedisPool;
import redis.clients.jedis.JedisPubSub;public class RedisTest {private static final String ADDR = "127.0.0.1";private static final int PORT = 6379;private static JedisPool jedis = new JedisPool(ADDR, PORT);private static RedisSub sub = new RedisSub();public static void init() {new Thread(new Runnable() {public void run() {jedis.getResource().subscribe(sub, "__keyevent@0__:expired");}}).start();}public static void main(String[] args) throws InterruptedException {init();for(int i =0;i<10;i++){String orderId = "OID000000"+i;jedis.getResource().setex(orderId, 3, orderId);System.out.println(System.currentTimeMillis()+"ms:"+orderId+"订单生成");}}static class RedisSub extends JedisPubSub {@Overridepublic void onMessage(String channel, String message) {System.out.println(System.currentTimeMillis()+"ms:"+message+"订单取消");}}
}
输出如下
1525096202813ms:OID0000000订单生成
1525096202818ms:OID0000001订单生成
1525096202824ms:OID0000002订单生成
1525096202826ms:OID0000003订单生成
1525096202830ms:OID0000004订单生成
1525096202834ms:OID0000005订单生成
1525096202839ms:OID0000006订单生成
1525096205819ms:OID0000000订单取消
1525096205920ms:OID0000005订单取消
1525096205920ms:OID0000004订单取消
1525096205920ms:OID0000001订单取消
1525096205920ms:OID0000003订单取消
1525096205920ms:OID0000006订单取消
1525096205920ms:OID0000002订单取消
可以明显看到3秒过后,订单取消了
ps:redis的pub/sub 机制存在一个硬伤,官网内容如下
原 :Because Redis Pub/Sub is fire and forget currently there is no way to use this feature if your application demands reliable notification of events, that is, if your Pub/Sub client disconnects, and reconnects later, all the events delivered during the time the client was disconnected are lost.
译 : Redis的发布/订阅目前是即发即弃(fire and forget)模式的,因此无法实现事件的可靠通知。也就是说,如果发布/订阅的客户端断链之后又重连,则在客户端断链期间的所有事件都丢失了。 因此,方案二不是太推荐。当然,如果你对可靠性要求不高,可以使用。
5.6 优缺点
优点:
- 由于使用Redis作为消息通道,消息都存储在Redis中。如果发送程序或者任务处理程序挂了,重启之后,还有重新处理数据的可能性。
- 做集群扩展相当方便
- 时间准确度高
缺点:
- 需要额外进行redis维护
6 方案五:使用消息队列
我们可以采用rabbitMQ的延时队列。RabbitMQ具有以下两个特性,可以实现延迟队列
- RabbitMQ可以针对Queue和Message设置 x-message-tt,来控制消息的生存时间,如果超时,则消息变为dead
letter - lRabbitMQ的Queue可以配置x-dead-letter-exchange
和x-dead-letter-routing-key(可选)两个参数,用来控制队列内出现了deadletter,则按照这两个参数重新路由。
结合以上两个特性,就可以模拟出延迟消息的功能,具体的,我改天再写一篇文章,这里再讲下去,篇幅太长。
6.1 优缺点
优点: 高效,可以利用rabbitmq的分布式特性轻易的进行横向扩展,消息支持持久化增加了可靠性。
缺点:本身的易用度要依赖于rabbitMq的运维.因为要引用rabbitMq,所以复杂度和成本变高
相关文章:

订单30分钟自动关闭的五种解决方案
1 前言 在开发中,往往会遇到一些关于延时任务的需求。例如 生成订单30分钟未支付,则自动取消生成订单60秒后,给用户发短信 对上述的任务,我们给一个专业的名字来形容,那就是延时任务 。那么这里就会产生一个问题,这…...

【vSphere 8 自签名 VMCA 证书】企业 CA 签名证书替换 vSphere VMCA CA 证书Ⅰ—— 生成 CSR
目录 替换拓扑图证书关系示意图说明 & 关联博文1. 默认证书截图2. 使用 certificate-manager 生成CSR2.1 创建存放CSR的目录2.2 记录PNID和IP2.3 生成CSR2.4 验证CSR 参考资料 替换拓扑图 证书关系示意图 本系列博文要实现的拓扑是 说明 & 关联博文 因为使用企业 …...

【diffusion model】扩散模型入门
写在最前,参加DataWhale 10月组队学习。 参考资料: HuggingFace 开源diffusion-models-class 1.扩散模型介绍 2.调用模型生成一张赛博风格的猫咪图片 2.1 安装依赖包 %pip install -qq -U diffusers datasets transformers accelerate ftfy pyarrow9…...
[Spring]为什么Spring动态代理默认使用CGlib,而不是JDK代理?
文章目录 原因一:CGlib不需要接口原因二:CGlib效率高原因三:JDK代理会导致注解失效如果希望使用JDK代理扩展AOP in Spring Boot, is it a JDK dynamic proxy or a Cglib dynamic proxy?SpringSpringBoot 原因一:CGlib不需要接口 …...

最长上升子序列(二分)代码模板
用二分的思想求最长上升子序列的思想就是保持单调性,用一个q[]数组来作为一个单调数组。 每次将a[i]放进q数组中,但是要保持单调性,q数组的长度就是答案。 q[]数组中存的是所以以下标为长度的最长子序列的结尾的最小值。 理解q[]数组的意义…...

存储优化知识复习一详细版解析
存储优化 知识复习一 一、 选择题 1、1948 年,____提出了“信息熵”(shāng) 的概念,解决了对信息的量化度量问题。 A、薛定谔 B、香农 C、克劳修斯 D、纳什 【参考答案】B2、 RAID2.0技术下,LUN是建立在____上。 A、硬盘 B、条带 C、Chun…...

“暂停加息,股市低迷:242只股票创新低,比特币突破2.8万美元后看涨趋势不可挡!“
11 月1日 FOMC 会议 美联储主席杰罗姆鲍威尔周五在纽约发表讲话,毫不意外地,他采取了更加鸽派的立场,因为在不确定的世界中,美国政府的过度杠杆化和可能即将到来的经济衰退已成为共识。 根据鲍威尔对未来加息的最低限度讨论&…...

微信小程序会议OA系统其他页面
前言: 及上一文章:https://blog.csdn.net/djssubddbj/article/details/133895170?spm1001.2014.3001.5501我们所写的会议OA的首页,在这个上面我们继续完成我们的会议OA系统,这是我们的本期所要完成的页面 自定义组件 微信小程序…...

LabVIEW中使用Get LV Class Default Value 出现错误1498
LabVIEW中使用Get LV Class Default Value 出现错误1498 在LabVIEW中开发了一个应用程序,其中包含可以在执行时动态配置插件的基类。生成可执行文件后,当应用程序要执行子类时,收到以下错误信息。 Error1498 occurred at Gen LV Class Defa…...

RabbitMQ中的核心概念和交换机类型
目录 一、RabbitMQ相关概念二、Exchange类型三、RabbitMQ概念模型总结 一、RabbitMQ相关概念 Producer:生产者,就是投递消息的一方。生产者创建消息,然后发布到RabbitMQ中。消息一般可以包含两个部分:消息体和附加消息。 消息体…...

HarmonyOS开发:Log工具类源码分析
前言 一转眼就十月中旬了,国庆的劲真大,到现在还未缓过来,以至于要更新的文章迟迟未发布,大家可以看到,最近一段时间的文章,都是关于HarmonyOS相关的,两个原因吧,一是我司有这样的任…...

FFmpeg和rtsp服务器搭建视频直播流服务
下面使用的是ubuntu的,window系统可以参考: 通过rtsp-simple-server和ffmpeg实现录屏并发布视频直播_rtsp simple server_病毒宇宇的博客-CSDN博客 一、安装rtsp-simple-server (1)下载rtsp-simple-server 下载地址:R…...

数据图册页面(左边一列图片缩略图,右边展示图片大图)
最近要写这么一个页面,左侧一列图片缩略图,点击左侧缩略图后有选中效果,然后右侧展示图片原图,还能够左右翻页查看。 最后写了一个demo出来,demo还不是很完善,需要自己修改,后面我也给出了修改建…...
leetcode:105从前序与中序遍历序列构造二叉树
105:从前序与中序遍历序列构造二叉树 啊,好久都没有更新算法题目了。曾今是C,如今是Java,感慨啊。 像树这样的算法题,基本都逃不开递归。递归的思想是:将大任务拆分为小任务。我们不妨构建一个函数&#…...
H5前端开发——DOM
H5前端开发——DOM 在H5前端开发中,DOM(Document Object Model)是一个非常核心的概念,指的是文档对象模型。简单来说,DOM是浏览器将HTML文档转换为一棵树形结构的方式,这样我们可以通过JavaScript脚本语言来操作和修改HTML文档。 DOM模型由节点组成,节点包括元素(ELEM…...

专访 Web3Go 新产品 Reiki:培育 AI 原生数字资产与创意新土壤
从 DeFi 到 NFTFi、SocialFi,web3 从业者在尝试 crypto 与区块链技术能为我们的生活、创作、娱乐和文化带来何种新体验,而生成式人工智能的突破性发展则为我们与链上世界的交互、社区内容创作等带来了新的体验,改变互动、交易和价值创造方式。…...

Docker仓库harbor私服搭建
Harbor和Registry都是Docker的镜像仓库,但是Harbor作为更多企业的选择,是因为相比较于Regisrty来说,它具有很多的优势。 提供分层传输机制,优化网络传输 Docker镜像是是分层的,而如果每次传输都使用全量文件(所以用FT…...
【LangChain系列 11】Prompt模版——拼装组合
原文地址:【LangChain系列 11】Prompt模版——拼装组合 本文速读: 多prompt模版组合 单prompt模版拼装 在平常业务开发中,我们常常需要把一些公共模块提取出来作为一个独立的部分,然后将业务中去将这些模块进行组合。在LLM应用…...

JVM三色标记
三色标记 什么是三色标记法 三色标记法,也被称为Tri-color Marking Algorithm,是一种用于追踪对象存活状态的垃圾回收算法。它基于William D. Hana和Mark S. McCulleghan在1976年提出的两色标记法的基础上进行了改进。 与两色标记法只能将对象标记为“…...

UE5--物体卡片与材质入门
参考资料: 《Unreal Engine5 入门到精通》--左央 虚幻引擎5.2文档:https://docs.unrealengine.com/5.2/zh-CN/ 前言: 跟着左央老师的《Unreal Engine5 入门到精通》学习制作AI版胡闹厨房,把学习过程与学习到的东西归纳总结起来。 …...
浏览器访问 AWS ECS 上部署的 Docker 容器(监听 80 端口)
✅ 一、ECS 服务配置 Dockerfile 确保监听 80 端口 EXPOSE 80 CMD ["nginx", "-g", "daemon off;"]或 EXPOSE 80 CMD ["python3", "-m", "http.server", "80"]任务定义(Task Definition&…...
Python|GIF 解析与构建(5):手搓截屏和帧率控制
目录 Python|GIF 解析与构建(5):手搓截屏和帧率控制 一、引言 二、技术实现:手搓截屏模块 2.1 核心原理 2.2 代码解析:ScreenshotData类 2.2.1 截图函数:capture_screen 三、技术实现&…...
在软件开发中正确使用MySQL日期时间类型的深度解析
在日常软件开发场景中,时间信息的存储是底层且核心的需求。从金融交易的精确记账时间、用户操作的行为日志,到供应链系统的物流节点时间戳,时间数据的准确性直接决定业务逻辑的可靠性。MySQL作为主流关系型数据库,其日期时间类型的…...

Nuxt.js 中的路由配置详解
Nuxt.js 通过其内置的路由系统简化了应用的路由配置,使得开发者可以轻松地管理页面导航和 URL 结构。路由配置主要涉及页面组件的组织、动态路由的设置以及路由元信息的配置。 自动路由生成 Nuxt.js 会根据 pages 目录下的文件结构自动生成路由配置。每个文件都会对…...

现代密码学 | 椭圆曲线密码学—附py代码
Elliptic Curve Cryptography 椭圆曲线密码学(ECC)是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础,例如椭圆曲线数字签…...
Robots.txt 文件
什么是robots.txt? robots.txt 是一个位于网站根目录下的文本文件(如:https://example.com/robots.txt),它用于指导网络爬虫(如搜索引擎的蜘蛛程序)如何抓取该网站的内容。这个文件遵循 Robots…...

多模态大语言模型arxiv论文略读(108)
CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题:CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者:Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...
.Net Framework 4/C# 关键字(非常用,持续更新...)
一、is 关键字 is 关键字用于检查对象是否于给定类型兼容,如果兼容将返回 true,如果不兼容则返回 false,在进行类型转换前,可以先使用 is 关键字判断对象是否与指定类型兼容,如果兼容才进行转换,这样的转换是安全的。 例如有:首先创建一个字符串对象,然后将字符串对象隐…...

html-<abbr> 缩写或首字母缩略词
定义与作用 <abbr> 标签用于表示缩写或首字母缩略词,它可以帮助用户更好地理解缩写的含义,尤其是对于那些不熟悉该缩写的用户。 title 属性的内容提供了缩写的详细说明。当用户将鼠标悬停在缩写上时,会显示一个提示框。 示例&#x…...

学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”
2025年#高考 将在近日拉开帷幕,#AI 监考一度冲上热搜。当AI深度融入高考,#时间同步 不再是辅助功能,而是决定AI监考系统成败的“生命线”。 AI亮相2025高考,40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕,江西、…...