buu [NCTF2019]babyRSA 1
题目描述:
题目分析:
- 首先明确两个公式:
e*d = 1 mod (p-1)(q-1)
ed1 = e*d - 1 = k(p-1)(q-1)
- 想要解出此题,我们必须知道n,而要知道n,我们要知道p和q的值
- 通过 e*d 的计算,我们知道其长度为2066位,而生成p的条件为 getPrime(1024),所以(p-1)(q-1)应该为2048位
此处所说的位数长度是以Bit为单位,加一减一都不影响位数,相乘的话即为位数相加,这些性质记住就好,以下是计算代码:
from Crypto.Util.number import *
e = 65537
d = 19275778946037899718035455438175509175723911466127462154506916564101519923603308900331427601983476886255849200332374081996442976307058597390881168155862238533018621944733299208108185814179466844504468163200369996564265921022888670062554504758512453217434777820468049494313818291727050400752551716550403647148197148884408264686846693842118387217753516963449753809860354047619256787869400297858568139700396567519469825398575103885487624463424429913017729585620877168171603444111464692841379661112075123399343270610272287865200880398193573260848268633461983435015031227070217852728240847398084414687146397303110709214913
print(gmpy2.bit_length(e*d))
# 2064
p = getPrime(1024)
print(gmpy2.bit_length(p))
# 1024
print(gmpy2.bit_length(p-1))
# 1024
- 又 ed1 = e*d - 1 = k(p-1)(q-1),2064-2048 = 16,所以k值必在 pow(2,15)至pow(2,16)之间
- 所以,我们可以利用此条件暴力求解k值,从而求出(p-1)*(q-1),间接求出 p 和 q 的值
- 那如何间接法呢?
- 首先我们求得了(p-1)(q-1),而p和q是两个相邻的质数,所以我们可以使用sympy库对p,q进行求解。思路为先对(p-1)(q-1)开方,再求得大于开方所得数和小于开方所得数的质数
p = sympy.prevprime(gmpy2.iroot((e*d-1)//i,2)[0])
q = sympy.nextprime(p)
- 其中 sympy.prevprime(x)是求大于x最近的质数,sympy.nextprime(x)是求小于x最近的质数。
- 解题代码如下:
import gmpy2
from Crypto.Util.number import long_to_bytes
import sympy
# e = 0x10001
e = 65537
d = 19275778946037899718035455438175509175723911466127462154506916564101519923603308900331427601983476886255849200332374081996442976307058597390881168155862238533018621944733299208108185814179466844504468163200369996564265921022888670062554504758512453217434777820468049494313818291727050400752551716550403647148197148884408264686846693842118387217753516963449753809860354047619256787869400297858568139700396567519469825398575103885487624463424429913017729585620877168171603444111464692841379661112075123399343270610272287865200880398193573260848268633461983435015031227070217852728240847398084414687146397303110709214913
c = 5382723168073828110696168558294206681757991149022777821127563301413483223874527233300721180839298617076705685041174247415826157096583055069337393987892262764211225227035880754417457056723909135525244957935906902665679777101130111392780237502928656225705262431431953003520093932924375902111280077255205118217436744112064069429678632923259898627997145803892753989255615273140300021040654505901442787810653626524305706316663169341797205752938755590056568986738227803487467274114398257187962140796551136220532809687606867385639367743705527511680719955380746377631156468689844150878381460560990755652899449340045313521804
p = 0
q = 0for k in range(pow(2,15),pow(2,16)):# pow(x,y) ---> x 的 y 次方# pow(x,y,z) ---> x 的 y 次方后,取余 zif (e*d-1)%k == 0:p = sympy.prevprime(gmpy2.iroot((e*d-1)//k,2)[0])# sympy.prevprime(x)是求大于x最近的质数# iroot(x,n) ---> x开n次根 ,返回值有两个,前一个是开方出来的整数部分,后一个是能否开出来,若能则为true,不能则为flaseq = sympy.nextprime(p)# sympy.nextprime(x)是求小于x最近的质数if (p-1)*(q-1) == (e*d-1)//k:breakn = p*q
m = pow(c,d,n)
m1 = long_to_bytes(m)
print(m1)
- 最终得出 flag{70u2_nn47h_14_v3ry_gOO0000000d}
收获与体会:
- 了解了一些字节的相关知识
- 知道了函数 sympy.prevprime(x)和sympy.nextprime(x)的相关知识
sympy.prevprime(x)是求大于x最近的质数
sympy.nextprime(x)是求小于x最近的质数 - 回顾了iroot(x,n) 和 pow(x,y) 的相关知识
iroot(x,n) —> x开n次根 ,返回值有两个,前一个是开方出来的整数部分,后一个是能否开出来,若能则为true,不能则为flase
pow(x,y) —> x 的 y 次方
pow(x,y,z) —> x 的 y 次方后,取余 z
相关文章:

buu [NCTF2019]babyRSA 1
题目描述: 题目分析: 首先明确两个公式: e*d 1 mod (p-1)(q-1) ed1 e*d - 1 k(p-1)(q-1)想要解出此题,我们必须知道n,而要知道n,我们要知道p和q的值通过 e*d 的计算,我们知道其长度为2066位,而生成p的…...

Java:如何选择一个Java API框架
Java编程语言是一种高级的、面向对象的语言,它使开发人员能够创建健壮的、可重用的代码。Java以其可移植性和平台独立性而闻名,这意味着Java代码可以在任何支持Java运行时环境(JRE)的系统上运行。Java和Node js一样,是一种功能强大的通用编程…...
mt6735 MIC 音量的调整及原理介绍
[DESCRIPTION] MIC 音量的调整及原理介绍[SOLUTION] audio_ver1_volume_custom_default.h#define VER1_AUD_VOLUME_MIC \ 64,112,192,144,192,192,184,184,184,184,184,0,0,0,0,\ 255,192,192,180,192,192,196,184,184,184,184,0,0,0,0,\ 255,208,208,180,255,208,196,0,0,0,0,…...

【深度学习】什么是线性回归逻辑回归单层神经元的缺陷
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录逻辑回归&线性回归单层神经元的缺陷单层神经元的缺陷逻辑回归&线性回归 线性回归预测的是一个连续值, 逻辑回归给出的”是”和“否”的回答. 等…...

Spring拦截器
SpringMVC提供了拦截器机制,允许运行目标方法之前进行一些拦截工作或者目标方法运行之后进行一下其他相关的处理。自定义的拦截器必须实现HandlerInterceptor接口。preHandle():这个方法在业务处理器处理请求之前被调用,在该方法中对用户请求…...
8个可能降低网站搜索引擎信任度的错误
如果觉得文章对你有用请点赞与关注,每一份支持都是我坚持更新更优质内容的动力!!!例如,发布一段质量差的网站内容不会完全破坏您的排名机会,只要您的内容策略的其余部分井井有条。但是本地SEO中存在一些错误…...

弱监督论文阅读:P2BNet算法笔记
标题:Point-to-Box Network for Accurate Object Detection via Single Point Supervision 会议:ECCV2022 论文地址:https://link.springer.com/10.1007/978-3-031-20077-9_4 官方代码:http://www.github.com/ucas-vg/P2BNet 作者…...

使用Java编写Hive的UDF实现身份证号码校验及15位升级18位
使用Java编写Hive的UDF实现身份证号码校验及15位升级18位 背景 在数仓项目中,有时候会根据身份证信息做一些取数filter或者条件判断的相关运算进而获取到所需的信息。古人是用Oracle做数仓,理所当然是用SQL写UDF【虽然SQL写UDF给SQL用就像用鸡肉饲养肉…...

前端:分享JS中7个高频的工具函数
目录 ◆1、将数字转换为货币 ◆2、将 HTML 字符串转换为 DOM 对象 ◆3、防抖 ◆4、日期验证 ◆5、将 FormData(表单数据)转换为 JSON ◆6、衡量一个函数的性能 ◆7、从数组中删除重复项 JavaScript 实用函数是有用的、可重复使用的片段࿰…...

docker基础用法及镜像和容器的常用命令大全
1.docker 体系架构 Docker 采用了 C / S 架构,包括客户端和服务端。Docker 守护进程作为服务端接受来自客户端的请求,并处理这些请求(创建、运行、分发容器)。客户端和服务端既可以运行在一个机器上,也可通过 socket 或…...

Spring(Bean生命周期)
目录 1. 生命周期简图2. 扩展接口介绍 2.1 Aware接口2.2 BeanPostProcessor接口2.3 InitializingBean2.4 DisposableBean2.5 BeanFactoryPostProcessor接口3. spring的简化配置 3.1 项目搭建3.2 Bean的配置和值注入3.3 AOP的示例 1. 生命周期简图 2. 扩展接口介绍 2.1 Aware接…...

什么是分布式锁?几种分布式锁分别是怎么实现的?
一、什么是分布式锁: 1、什么是分布式锁: 分布式锁,即分布式系统中的锁。在单体应用中我们通过锁解决的是控制共享资源访问的问题,而分布式锁,就是解决了分布式系统中控制共享资源访问的问题。与单体应用不同的是&am…...
【一天一门编程语言】R 语言程序设计极简教程
R 语言程序设计极简教程 文章目录 R 语言程序设计极简教程R语言简介1.1 介绍1.2 R 语言的基础知识1.2.1 语法1.2.2 数据类型1.2.3 基本操作1.3 R 语言的高级知识1.3.1 函数1.3.2 包1.3.3 面向对象编程1.4 使用 R 语言的实践1.4.1 数据处理1.4.2 数据可视化1.4.3 数据建模1.4.3.…...
记一次顿悟的经历
2023.02.20 一次顿悟的经历 体验一次顿悟 需求: 为避免接收数据时一直阻塞,先调用 select 在一定时间内判断是否有数据可读 如果超时,就报错没读到数据,即使返回 如果仍然在 set 里,就调用 recv 函数接收数据 问…...

19_FreeRTOS软件定时器
目录 软件定时器介绍 FreeRTOS软件定时器特点 软件定时器的命令队列 软件定时器的相关配置 单次定时器和周期定时器 软件定时器结构体成员 FreeRTOS软件定时器相关API函数 实验源码 软件定时器介绍 定时器描述:从指定的时刻开始,经过一个指定时间,然后触发一个超时事件…...

值得推荐!安利5款良心又好用的小众软件
电脑上的各类软件有很多,除了那些常见的大众化软件,还有很多不为人知的小众软件,专注于实用功能,简洁干净、功能强悍。今天分享5个实用的软件,简单实用,效果拉满,堪称工作生活必备! …...

Enhanced ShockBurst (ESB)原文翻译
自我学习为主,同时也为所需要的提供一份资料 官方地址 增强型ShockBurst(ESB)是一种支持双向数据包通信的基本协议,包括数据包缓冲、数据包确认和丢失数据包的自动重传。ESB以低功耗提供无线通信,并且实现的代码量小且…...
软件测试之兼容性测试
对于基于计算机平台的软件,在测试过程中必须考虑软、硬件的兼容性,在设计测试用例的过程中必须考虑数据转换或转移的问题,应该尽力发现其可能带来的错误。不仅是基于计算机平台的软件,对于嵌入式软件也一样,在软件升级…...
笔记(一)——容器
容器分类:序列式容器:每个元素都有固定位置,取决于插入的时机和地点,和元素无关,如vector、deque、list、stack、queue。关联式容器:元素位置取决于特定的排序准则,和插入顺序无关,如…...
C++入门:命名空间
假设这样一种情况,当一个班上有两个名叫 Zara 的学生时,为了明确区分它们,我们在使用名字之外,不得不使用一些额外的信息,比如他们的家庭住址,或者他们父母的名字等等。同样的情况也出现在 C 应用程序中。例…...

观成科技:隐蔽隧道工具Ligolo-ng加密流量分析
1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具,该工具基于TUN接口实现其功能,利用反向TCP/TLS连接建立一条隐蔽的通信信道,支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式,适应复杂网…...

MongoDB学习和应用(高效的非关系型数据库)
一丶 MongoDB简介 对于社交类软件的功能,我们需要对它的功能特点进行分析: 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具: mysql:关系型数据库&am…...
IGP(Interior Gateway Protocol,内部网关协议)
IGP(Interior Gateway Protocol,内部网关协议) 是一种用于在一个自治系统(AS)内部传递路由信息的路由协议,主要用于在一个组织或机构的内部网络中决定数据包的最佳路径。与用于自治系统之间通信的 EGP&…...
Java 加密常用的各种算法及其选择
在数字化时代,数据安全至关重要,Java 作为广泛应用的编程语言,提供了丰富的加密算法来保障数据的保密性、完整性和真实性。了解这些常用加密算法及其适用场景,有助于开发者在不同的业务需求中做出正确的选择。 一、对称加密算法…...
SQL慢可能是触发了ring buffer
简介 最近在进行 postgresql 性能排查的时候,发现 PG 在某一个时间并行执行的 SQL 变得特别慢。最后通过监控监观察到并行发起得时间 buffers_alloc 就急速上升,且低水位伴随在整个慢 SQL,一直是 buferIO 的等待事件,此时也没有其他会话的争抢。SQL 虽然不是高效 SQL ,但…...

给网站添加live2d看板娘
给网站添加live2d看板娘 参考文献: stevenjoezhang/live2d-widget: 把萌萌哒的看板娘抱回家 (ノ≧∇≦)ノ | Live2D widget for web platformEikanya/Live2d-model: Live2d model collectionzenghongtu/live2d-model-assets 前言 网站环境如下,文章也主…...
【前端异常】JavaScript错误处理:分析 Uncaught (in promise) error
在前端开发中,JavaScript 异常是不可避免的。随着现代前端应用越来越多地使用异步操作(如 Promise、async/await 等),开发者常常会遇到 Uncaught (in promise) error 错误。这个错误是由于未正确处理 Promise 的拒绝(r…...

WPF八大法则:告别模态窗口卡顿
⚙️ 核心问题:阻塞式模态窗口的缺陷 原始代码中ShowDialog()会阻塞UI线程,导致后续逻辑无法执行: var result modalWindow.ShowDialog(); // 线程阻塞 ProcessResult(result); // 必须等待窗口关闭根本问题:…...

DBLP数据库是什么?
DBLP(Digital Bibliography & Library Project)Computer Science Bibliography是全球著名的计算机科学出版物的开放书目数据库。DBLP所收录的期刊和会议论文质量较高,数据库文献更新速度很快,很好地反映了国际计算机科学学术研…...

Kubernetes 节点自动伸缩(Cluster Autoscaler)原理与实践
在 Kubernetes 集群中,如何在保障应用高可用的同时有效地管理资源,一直是运维人员和开发者关注的重点。随着微服务架构的普及,集群内各个服务的负载波动日趋明显,传统的手动扩缩容方式已无法满足实时性和弹性需求。 Cluster Auto…...