当前位置: 首页 > news >正文

详细介绍如何使用Ipopt非线性求解器求解带约束的最优化问题

   本文中将详细介绍如何使用Ipopt非线性求解器求解带约束的最优化问题,结合给出的带约束的最优化问题示例,给出相应的完整的C++程序,并给出详细的解释和注释,以及编译规则等

   一、Ipopt库的安装和测试

   本部分内容在之前的文章《Ubuntu20.04安装Ipopt的流程介绍及报错解决方法(亲测简单有效)》中已经详细介绍过了,链接如下:

   https://blog.csdn.net/qq_44339029/article/details/133679131


   二、使用Ipopt非线性求解器求解带约束的最优化问题的程序示例


   0、明确要求解的带约束的最优化问题

   首先,我们来看一个简单的带约束的最优化问题,其包含两个不等式约束和1个等式约束,详情如下:

   f = ( x 1 − 10.24 ) 2 + 5.21 x 2 + 9.9 ( x 3 − x 4 ) 2 f=(x_1-10.24)^2+5.21x_2+9.9(x_3-x_4)^2 f=(x110.24)2+5.21x2+9.9(x3x4)2

   g 1 : 2 ≤ x 3 − x 4 ≤ 10 g 2 : 2.99 ≤ x 2 ≤ 100 g 3 : x 2 = x 4 \begin{aligned}g_1 & : & 2\leq x_3-x_4\leq10\\ g_2 & : & 2.99\leq x_2\leq100\\ g_3 & : & x_2=x_4\end{aligned} g1g2g3:::2x3x4102.99x2100x2=x4

   其中 x 1 x_1 x1 x 2 x_2 x2 x 3 x_3 x3 x 4 x_4 x4的取值范围均为0~100,易知使得上述目标函数 f f f取值最小的解为:10.24、2.99、4.99、2.99。

   下面介绍,如何编程使用Ipopt非线性求解器求解该问题


   1. 引入头文件和命名空间:

#include <iostream>
#include <cassert>
#include <cppad/ipopt/solve.hpp>
using CppAD::AD;

   引入必要的C++头文件,包括iostream(用于输入输出),cassert(用于C风格的assert)以及cppad/ipopt/solve.hpp(用于Ipopt求解器和CppAD库的接口)。然后在一个匿名的命名空间中引入了AD类型,这是CppAD库中用于自动微分(Automatic Differentiation)的数据类型。

   2. 定义FG_eval类:

namespace {class FG_eval {public:typedef CPPAD_TESTVECTOR(AD<double>) ADvector;void operator()(ADvector& fg, const ADvector& x) {// ...}};
}

   在匿名命名空间中,定义一个FG_eval类,用于计算目标函数和约束条件的值。这个类也是调用使用CppAD和Ipopt库所需的最重要的接口,这个类中的operator()函数是用于计算问题的目标函数和约束条件的核心部分。它接受两个向量:fg用于存储目标函数值和约束条件值,x用于存储优化变量。

   3. 定义operator()函数:

   接下来,我们根据第0步中明确的目标函数及约束条件来编写核心的operator函数,示例如下:

void FG_eval::operator()(ADvector& fg, const ADvector& x) {assert(fg.size() == 4);assert(x.size() == 4);AD<double> x1 = x[0];AD<double> x2 = x[1];AD<double> x3 = x[2];AD<double> x4 = x[3];fg[0] = (x1 - 10.24) * (x1 - 10.24) + 5.21 * x2 + 9.9 * (x3 - x4) * (x3 - x4);fg[1] = x3 - x4;fg[2] = x2;fg[3] = x2 - x4;// 打印计算结果std::cout << "fg[0]:" << fg[0] << std::endl;std::cout << "fg[1]:" << fg[1] << std::endl;std::cout << "fg[2]:" << fg[2] << std::endl;std::cout << "fg[3]:" << fg[3] << std::endl;
}

   operator()函数接受fgx向量,然后根据问题的定义计算目标函数和约束条件的值,并将它们存储在fg向量中。同时,它也打印出这些值, 其中fg[0]即为目标函数表达式、fg[1]、fg[2]、fg[3]中依次对应了第0步中设定的三个约束,不等式约束直接写即可,等式约束的等式左右两边同时减去右边的项,使等式右边变为0。

   4. 定义主函数get_started(该函数名字可任取):

   定义一个主函数,设定自变量的初始值,以及自变量和约束的上下限,设定和提供调用Ipopt非线性求解器求解所需要的变量,然后调用求解器进行求解,并进行验证等操作,程序示例如下:

bool get_started(void)
{	bool ok = true;size_t i;typedef CPPAD_TESTVECTOR( double ) Dvector;size_t nx = 4;size_t ng = 3;Dvector xi(nx);xi[0] = 10.0;xi[1] = 5.0;xi[2] = 5.0;xi[3] = 100.0;Dvector xl(nx), xu(nx);for(i = 0; i < nx; i++){	xl[i] = 0;xu[i] = 100;}Dvector gl(ng), gu(ng);gl[0] = 2;     gu[0] = 10;gl[1] = 2.99;  gu[1] = 100;gl[2] = 0;     gu[2] = 0;FG_eval fg_eval;std::string options;options += "Integer print_level  0\n";options += "String  sb           yes\n";options += "Integer max_iter     10\n";options += "Numeric tol          1e-6\n";options += "String  derivative_test            second-order\n";options += "Numeric point_perturbation_radius  0.\n";CppAD::ipopt::solve_result<Dvector> solution;CppAD::ipopt::solve<Dvector, FG_eval>(options, xi, xl, xu, gl, gu, fg_eval, solution);ok &= solution.status == CppAD::ipopt::solve_result<Dvector>::success;double check_x[]  = { 10.24, 2.99, 4.99, 2.99 }; double rel_tol    = 1e-6;  // relative tolerancedouble abs_tol    = 1e-6;  // absolute tolerancefor(i = 0; i < nx; i++){		ok &= CppAD::NearEqual(check_x[i],  solution.x[i],   rel_tol, abs_tol     ); std::cout << "x[" << i << "] = " << solution.x[i] << std::endl;}return ok;
}

   以下是程序的详细解释:

   (1). bool get_started(void):程序逻辑流程的主要函数,get_started函数定义了问题的基本参数,如变量数量、约束数量、变量的初始值,以及变量和约束的上下界。然后,它创建了一个FG_eval对象来计算目标函数和约束条件,设置了Ipopt求解器的选项,并最终调用求解器来解决问题。

   (2). bool ok = true;:定义一个布尔变量 ok,用于表示问题是否成功求解。一开始将其初始化为 true

   (3). 类型别名 Dvector:通过 typedef CPPAD_TESTVECTOR(double) Dvector; 定义了一个 Dvector 类型,它是CppAD库中的向量类型,用于存储双精度(double)数值。

   (4). size_t nx = 4;:定义一个 size_t 类型的变量 nx,表示问题中独立变量(自变量)的数量,即问题的变量维度。在这个示例中,有4个独立的自变量。

   (5). size_t ng = 3;:定义一个 size_t 类型的变量 ng,表示问题中的约束数量,即约束的维度。在这个示例中,有3个约束条件。

   (6). 创建 Dvector 向量 xi:用于存储问题的独立变量(自变量)。这个向量有4个元素,对应于4个自变量。

   (7). 设置初始猜测值 xi:为 xi 向量中的每个元素分别赋初值,为检验算法性能,这里设定了一个较差的初始值。

   - `xi[0] = 10.0;`- `xi[1] = 5.0;`- `xi[2] = 5.0;`- `xi[3] = 100.0;`

   (8). 定义变量和约束条件的上下界:

   - 创建 Dvector 向量 xlxu,它们分别表示变量的下界和上界,并根据第0步中的设定的自变量的取值范围0~100进行设定

   - 创建 Dvector 向量 glgu,它们分别表示约束条件的下界和上界,并根据第0步中,三个约束的进行设定,对于前两个不等式约束,直接设定即可,第三个等式约束,即 x 2 − x 4 = 0 x_2-x_4=0 x2x4=0,因此,上下限均设为0即可。

   (9). 创建 FG_eval 类的对象 fg_evalFG_eval 即我们第二步中设定的类,用于计算目标函数和约束条件的值。这是问题的目标函数和约束条件的具体定义。

   (10). 创建字符串 options:用于存储Ipopt求解器的选项,包括设置输出级别、最大迭代次数、收敛容差等,详情如下所示:

    - `options += "Integer print_level  0\n";`:将输出级别设置为0,以关闭求解器的详细输出,只打印关键信息。- `options += "String  sb           yes\n";`:使用平衡约束优化方法。- `options += "Integer max_iter     10\n";`:设置最大迭代次数为10次。- `options += "Numeric tol          1e-6\n";`:设置迭代停止的收敛容差为1e-6- `options += "String  derivative_test            second-order\n";`:启用二阶导数测试,用于检查目标函数和约束条件的导数是否正确。- `options += "Numeric point_perturbation_radius  0.\n";`:将随机扰动的半径设置为0,表示不使用扰动进行数值近似求导。

   (11). 创建 CppAD::ipopt::solve_result<Dvector> solution;:用于存储求解结果的对象。

   (12). 调用 CppAD::ipopt::solve 函数:使用Ipopt求解器解决非线性规划问题。传递了问题选项、独立变量的初始值、变量的上下界、约束条件的上下界、问题的定义(fg_eval 对象),以及存储结果的 solution 对象。

   (13). 检查求解器的状态:如果状态为成功(success),则将 ok 变量保持为真,表示问题已成功求解。

   注:下面的第(14)~(16)部分,是为了验证求解是否正确,为非必要步骤

   (14) 创建 check_x 数组:包含问题的精确解。这些值是问题的已知精确解。

   (15). 设置相对容差和绝对容差的阈值:这些值用于控制验证解的精度。

   (16). 遍历问题中的每个变量,进行解的验证:使用 CppAD::NearEqual 函数来比较问题的解与精确解是否足够接近。如果它们的差距在相对容差和绝对容差的范围内,ok 变量将保持为真,并打印每个变量的解。

   (17).返回 ok 变量:表示问题是否成功求解。

  

   5. C++主函数main

int main(void) {std::cout << "===== Ipopt with CppAD Testing =====" << std::endl;bool result = get_started();std::cout << "Final checking: " << result << std::endl;
}

   main函数是程序的入口点,它简单地调用get_started函数来执行非线性规划问题的求解,并打印结果。


   6. ☆☆☆带详细注释的完整程序`☆☆☆

# include <iostream>
// C style asserts
# include <cassert>
// 包含Ipopt求解器头文件
# include <cppad/ipopt/solve.hpp>// 在一个匿名的命名空间中,引入了一个AD类型,它是CppAD库中用于自动微分(Automatic Differentiation)的数据类型。AD类型可以用来表示变量和函数,使其具备微分能力。
namespace {using CppAD::AD;class FG_eval {public:typedef CPPAD_TESTVECTOR( AD<double> ) ADvector;// fg: function that evaluates the objective and constraints using the syntax// 定义一个函数运算符,用于计算目标函数和约束条件的值void operator()(ADvector& fg, const ADvector& x){	//使用assert来设定fg和x的大小,以确保它们与问题的维度匹配//fg 向量用于存储目标函数值和约束条件值,x向量用于存储优化变量assert( fg.size() == 4 );assert( x.size()  == 4 );//  将 x 中的优化变量分配给 AD 类型的变量 x1 到 x4。这是在使用C++ Algorithmic Differentiation(CppAD)时定义问题中的独立变量的方式。AD<double> x1 = x[0];AD<double> x2 = x[1];AD<double> x3 = x[2];AD<double> x4 = x[3];// 计算目标函数的值,将其存储在 fg[0] 中。这里使用了 x1 到 x4 这些 AD 类型的变量,这意味着这个表达式将被自动微分,以便后续的梯度计算。fg[0] = (x1-10.24) * (x1-10.24) + 5.21*x2 + 9.9*(x3-x4)*(x3-x4);//  分别计算三个约束条件的值,并将它们存储在 fg[1] 和 fg[2]、 fg[3]中。fg[1] = x3-x4;fg[2] = x2;fg[3] = x2-x4;//std::cout << "fg[0]:" << fg[0]<< std::endl;std::cout << "fg[1]:" << fg[1]<< std::endl;std::cout << "fg[2]:" << fg[2]<< std::endl;std::cout << "fg[3]:" << fg[3]<< std::endl;return;}};
}// 该函数用于设置和解决非线性规划问题
// 它首先定义了问题的一些基本参数,如变量数量、约束数量、变量的初始值、变量和约束的上下界等
// 然后创建一个FG_eval对象用于计算目标函数和约束条件
// 最后,使用CppAD::ipopt::solve函数来解决问题,并将结果存储在solution中
bool get_started(void)
{	bool ok = true;size_t i;// 创建了一个类型别名 Dvector,它是CppAD库中的一个向量类型,用于存储双精度(double)数值。这个向量类型是CppAD库的一部分,通常用于存储问题的变量、约束和其他向量。typedef CPPAD_TESTVECTOR( double ) Dvector;// 声明了一个 size_t 类型的变量 nx,它表示问题中独立变量(自变量)的数量,也就是问题的变量维度。在这个示例中,有4个独立变量,因此 nx 的值为4。size_t nx = 4;// 声明了一个 size_t 类型的变量 ng,它表示问题中的约束数量,也就是约束的维度。在这个示例中,有3个约束条件,因此 ng 的值为3。size_t ng = 3;//  创建了一个名为 xi 的 Dvector 类型的向量,用于存储问题的独立变量(自变量)。这个向量有4个元素,对应于4个自变量。Dvector xi(nx);// 分别为这4个独立变量设置了初始值。这些值将用作问题的初始猜测,作为非线性规划求解器的起点。xi[0] = 10.0;xi[1] = 5.0;xi[2] = 5.0;xi[3] = 100.0;//设置问题的变量(自变量)和约束条件的上下界(限制条件)。Dvector xl(nx), xu(nx);for(i = 0; i < nx; i++){	xl[i] = 0;xu[i] = 100;}Dvector gl(ng), gu(ng);gl[0] = 2;     gu[0] = 10;gl[1] = 2.99;  gu[1] = 100;gl[2] = 0;     gu[2] = 0;// 创建了 FG_eval 类的对象 fg_eval,用于计算目标函数和约束条件的值。这是问题的目标函数和约束条件的具体定义。FG_eval fg_eval;// 创建了一个字符串 options,用于存储Ipopt求解器的选项。std::string options;// 设置了求解器选项,将 print_level 参数设置为0,以关闭求解器的输出,即不会在控制台打印详细信息,只打印关键信息。options += "Integer print_level  0\n";//  将 sb 参数设置为 "yes",这表示使用平衡约束优化方法。options += "String  sb           yes\n";// 设置最大迭代次数为10次。options += "Integer max_iter     10\n";// approximate accuracy in first order necessary conditions;// see Mathematical Programming, Volume 106, Number 1,// Pages 25-57, Equation (6)// 设置迭代停止的收敛容差为1e-6。options += "Numeric tol          1e-6\n";//  启用了二阶导数测试,用于检查目标函数和约束条件的导数是否正确。options += "String  derivative_test            second-order\n";// maximum amount of random pertubation; e.g.,// when evaluation finite diff// 将随机扰动的半径设置为0,表示不使用扰动进行数值近似求导。options += "Numeric point_perturbation_radius  0.\n";// 创建了一个用于存储求解结果的对象 solution,CppAD::ipopt::solve_result<Dvector> solution;// 调用了 CppAD::ipopt::solve 函数,用于解决非线性规划问题。它传递了问题选项、独立变量的初始值、变量的上下界、约束条件的上下界、问题的定义(fg_eval 对象),以及存储结果的 solution 对象。CppAD::ipopt::solve<Dvector, FG_eval>(options, xi, xl, xu, gl, gu, fg_eval, solution);//检查求解器的状态,如果状态为成功(success),则 ok 变量将保持为真。这表示问题已成功求解。ok &= solution.status == CppAD::ipopt::solve_result<Dvector>::success;// 创建一个名为 check_x 的数组,其中包含了问题的精确解。这个数组中的值是问题的已知精确解。double check_x[]  = { 10.24, 2.99, 4.99, 2.99 }; // 设置了相对容差和绝对容差的阈值。这些值用于控制验证解的精度。double rel_tol    = 1e-6;  // relative tolerancedouble abs_tol    = 1e-6;  // absolute tolerance// 遍历问题中的每个变量,进行解的验证。for(i = 0; i < nx; i++){	//使用 CppAD::NearEqual 函数来比较问题的解 solution.x[i] 与精确解 check_x[i] 是否足够接近。如果它们的差距在相对容差和绝对容差的范围内,ok 变量将保持为真。ok &= CppAD::NearEqual(check_x[i],  solution.x[i],   rel_tol, abs_tol     ); // 使用 std::cout 打印每个变量的解,以便在控制台上查看结果。std::cout << "x[" << i << "] = " << solution.x[i] << std::endl;}return ok;
}// main program that runs all the tests
int main(void)
{	std::cout << "===== Ipopt with CppAD Testing =====" << std::endl;bool result = get_started();std::cout << "Final checking: " << result << std::endl;
}
// END C++

   三、编译验证

   将上面第二部分,第6步中给出的完整的程序,保存为CppAD_Ipopt.cpp,然后在同一目录下,创建一个名为CMakeLists.txt的文件,接下来,我们需要在CMakeLists.txt文件中,编写编译规则,如下所示:

# 设置CMake的最低版本要求
cmake_minimum_required(VERSION 3.5)
# 项目名称
project(CppadIpoptDemo)
# 寻找Ipopt包(确保你已经安装了Ipopt和CppAD)
# find_package(Ipopt REQUIRED)
# 设置可执行文件的名称和源文件
add_executable(cppad_ipopt_demo CppAD_Ipopt.cpp)
# 包含Ipopt的头文件
# target_include_directories(cppad_ipopt_demo PRIVATE ${IPOPT_INCLUDE_DIRS})
# 链接Ipopt库
# target_link_libraries(cppad_ipopt_demo ${IPOPT_LIBRARIES})
TARGET_LINK_LIBRARIES(cppad_ipopt_demo ipopt)

   保存,并关掉CMakeLists.txt文件,接下来就利用该文件对CppAD_Ipopt.cpp进行编译,在该目录下空白处,右键打开终端,依次输入以下四条语句

mkdir build
cd build
cmake ..
make

   以上编译结束后,在build文件夹下,生成了可执行文件cppad_ipopt_demo,如下图所示

   在当前目录下,右键打开终端,输入以下指令运行该文件

./cppad_ipopt_demo

   运行结果如下,可以发现即使在给定的初始解很差的情况下,Ipopt非线性求解器依然能够求解出第二部分第0部步中设定的带约束优化问题的最优解。


相关文章:

详细介绍如何使用Ipopt非线性求解器求解带约束的最优化问题

本文中将详细介绍如何使用Ipopt非线性求解器求解带约束的最优化问题&#xff0c;结合给出的带约束的最优化问题示例&#xff0c;给出相应的完整的C程序&#xff0c;并给出详细的解释和注释&#xff0c;以及编译规则等 一、Ipopt库的安装和测试 本部分内容在之前的文章《Ubuntu2…...

跳跃游戏Ⅱ-----题解报告

题目&#xff1a;力扣&#xff08;LeetCode&#xff09;官网 - 全球极客挚爱的技术成长平台 与Ⅰ不同的是&#xff0c;这次要求找出最小的跳跃次数。思路也很简单&#xff0c;在每一次跳跃之后都更新最远的跳跃距离。 举个列子&#xff1a; 输入&#xff1a;2,3,1,1,4 第一次…...

JVM 基础篇:类加载器

一.了解JVM 1.1什么是JVM JVM是Java Virtual Machine&#xff08;Java虚拟机&#xff09;的缩写&#xff0c;是一个虚构出来的计算机&#xff0c;是通过在实际的计算机上仿真模拟计算机功能来实现的&#xff0c;JVM屏蔽了与具体操作系统平台相关的信息&#xff0c;Java程序只需…...

文本批量处理,高效便捷的管理利器!

您是否曾经为了批量处理文本数据而烦恼&#xff1f;冗长的文本文件&#xff0c;繁琐的处理步骤&#xff0c;让您的工作变得异常困难。现在&#xff0c;我们向您推荐一款文本批量处理工具&#xff0c;它能够快速、准确地处理大量文本数据&#xff0c;让您的管理工作更加高效便捷…...

百度松果20231022作业

越狱 盒子与球 斯特林第二类数&#xff08;用dp求&#xff09;*盒子的阶乘 int dp[11][11]; //n>k int A(int x){int res1;fer(i,2,x1)res*i;return res; } signed main(){IOS;dp[2][1]dp[2][2]dp[1][1]1;fer(i,3,11){dp[i][1]1;fer(j,2,i){dp[i][j]j*dp[i-1][j]dp[i-1][j-…...

cropper+jq(图片裁剪上传)

<link rel"stylesheet" href"../../cropper/cropper.css"> <script type"text/javascript" src"../../cropper/cropper.js"></script> 没有引入jquery的原因 引入jquery <script src"../jquery-1.10.2.js…...

运行 `npm install` 时的常见问题与解决方案

运行 npm install 时的常见问题与解决方案 问题一&#xff1a;网络连接问题 描述&#xff1a; 运行 npm install 时&#xff0c;可能会遇到网络连接问题&#xff0c;导致无法正常下载依赖包。 报错示例&#xff1a; npm ERR! network connection timed outnpm ERR! connect…...

【2023年11月第四版教材】软考高项极限冲刺篇笔记(1)

1 你要接受一些观点 1、不明白的不要去试图理解了,死记硬背 2、要快速过知识点,卡住是不行的,慢也是没有任何作用的。 3、将厚厚的知识,变为薄薄的重点。标红必背 4、成熟度等级,很多知识领域都有,就是评价在一个领域达到的级别。 5、记得搜一下当年的高频科技词汇 6、选…...

http post协议发送本地压缩数据到服务器

1.客户端程序 import requests import os # 指定服务器的URL url "http://192.168.1.9:8000/upload"# 压缩包文件路径 folder_name "upload" file_name "test.7z" headers {Folder-Name: folder_name,File-Name: file_name } # 发送POST请求…...

系列十三、Redis的哨兵机制

一、概述 Sentinel&#xff08;哨兵&#xff09;是Redis的高可用解决方案&#xff0c;由一个或者多个Sentinel实例组成集群&#xff0c;可以监视任意多个主服务器&#xff0c;以及这些服务器下属的所有从服务器&#xff0c;并在被监视的主服务器下线或者宕机时&#xff0c;自动…...

设置Unity URP管线中的渲染开关

在上一节中&#xff0c;我们添加了外轮廓线&#xff0c;但这个外轮廓线在所有使用该Shader的网格上是始终存在的。 如果我们想做一个开关&#xff0c;决定是否打开外轮廓线时&#xff0c;我们可以使用一个新的Uniform bool值&#xff0c;然后判断bool是否为true来开启外轮廓线…...

神器抓包工具 HTTP Analyzer v7.5 的下载,安装,使用,破解说明以及可能遇到的问题

文章目录 1、HTTP Analyzer 工具能干什么&#xff1f;2、HTTP Analyzer 如何下载&#xff1f;3、如何安装&#xff1f;4、如何使用&#xff1f;5、如何破解&#xff1f;6、Http AnalyzerStd V7可能遇到的问题 1、HTTP Analyzer 工具能干什么&#xff1f; A1&#xff1a;HTTP A…...

虚幻引擎:代理

一、代理类型 1.单薄代理 特点&#xff1a;允许有返回值&#xff0c;允许有参数&#xff0c;只可以一对一的传递消息就算绑定多个&#xff0c;但是总会被最后一个覆盖 2.多播代理 特点&#xff1a;不允许有返回值&#xff0c;允许有参数允许一对多传递消息 3.动态代理 …...

Openssl数据安全传输平台004:Socket C-API封装为C++类 / 服务端及客户端代码框架和实现

文章目录 0. 代码仓库1. 客户端C API2. 客户端C API的封装分析2.1 sckClient_init()和sckClient_destroy()2.2 sckClient_connect2.3 sckClient_closeconn()2.4 sckClient_send()2.5 sckClient_rev()2.6 sck_FreeMem 3. 客户端C API4. 服务端C API5. 服务端C6. 客户端和服务端代…...

网络协议--Traceroute程序

8.1 引言 由Van Jacobson编写的Traceroute程序是一个能更深入探索TCP/IP协议的方便可用的工具。尽管不能保证从源端发往目的端的两份连续的IP数据报具有相同的路由&#xff0c;但是大多数情况下是这样的。Traceroute程序可以让我们看到IP数据报从一台主机传到另一台主机所经过…...

Centos磁盘问题小纪

场景说明 放个windows的图片镇楼&#xff0c;在给一个centos的来说明问题&#xff0c;咋了&#xff0c;好好的系统&#xff0c;啥也不能干了 来先上一波命令分析下问题 查看挂载 mount 重新挂载数据 mount -o remount, rw / 查看磁盘 df -h 查看分区挂载详情 rw读写权限 mount …...

计算机网络第三章习题

1.假定1km长的CSMA/CD网络的数据率为1Gb/s。设信号在网络上的传播 速率为200000km/s。求能够使用此协议的最短帧长. 问题刨析: 逻辑链: 最短帧长数据传输率x争用期2τ(2倍端到端所需要的时间) 题目已经给出数据率为1Gb/s,所以我们要知道争用期2τ是多少. 端到端所需要的时间信…...

Layui弹出层关闭后页面自动刷新的用法以及建议

首先在HTML中定义一个查询按钮 <div class"layui-inline"><button class"layui-btn" id"searchBtn" lay-submit lay-filter"data-search-btn" > <i class"layui-icon layui-icon-search">查询</i&…...

PHP 在线考试管理系统mysql数据库web结构layUI布局apache计算机软件工程网页wamp

一、源码特点 PHP 在线考试管理系统是一套完善的web设计系统 layUI技术布局 &#xff0c;对理解php编程开发语言有帮助&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主要采用B/S模式开发。 PHP 在线考试系统1 代码 https://download.csdn.net/download/qq_41…...

【茫茫架构路】1. Class File字节码文件解析

本文所有内容的JDK版本为 OpenJDK 11 JDK11 Class File官方说明。 Java解析字节码文件源码参考&#xff0c;以下为部分字节码解析源码展示。 public ClassFile(DataInputStream in) {try {//magic: 0xCAFEBABEthis.magic ClassReader.readInt(in);System.out.println("m…...

Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?

Golang 面试经典题&#xff1a;map 的 key 可以是什么类型&#xff1f;哪些不可以&#xff1f; 在 Golang 的面试中&#xff0c;map 类型的使用是一个常见的考点&#xff0c;其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...

【WiFi帧结构】

文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成&#xff1a;MAC头部frame bodyFCS&#xff0c;其中MAC是固定格式的&#xff0c;frame body是可变长度。 MAC头部有frame control&#xff0c;duration&#xff0c;address1&#xff0c;address2&#xff0c;addre…...

Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)

概述 在 Swift 开发语言中&#xff0c;各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过&#xff0c;在涉及到多个子类派生于基类进行多态模拟的场景下&#xff0c;…...

Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务

通过akshare库&#xff0c;获取股票数据&#xff0c;并生成TabPFN这个模型 可以识别、处理的格式&#xff0c;写一个完整的预处理示例&#xff0c;并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务&#xff0c;进行预测并输…...

将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?

Otsu 是一种自动阈值化方法&#xff0c;用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理&#xff0c;能够自动确定一个阈值&#xff0c;将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...

页面渲染流程与性能优化

页面渲染流程与性能优化详解&#xff08;完整版&#xff09; 一、现代浏览器渲染流程&#xff08;详细说明&#xff09; 1. 构建DOM树 浏览器接收到HTML文档后&#xff0c;会逐步解析并构建DOM&#xff08;Document Object Model&#xff09;树。具体过程如下&#xff1a; (…...

Psychopy音频的使用

Psychopy音频的使用 本文主要解决以下问题&#xff1a; 指定音频引擎与设备&#xff1b;播放音频文件 本文所使用的环境&#xff1a; Python3.10 numpy2.2.6 psychopy2025.1.1 psychtoolbox3.0.19.14 一、音频配置 Psychopy文档链接为Sound - for audio playback — Psy…...

【Java_EE】Spring MVC

目录 Spring Web MVC ​编辑注解 RestController RequestMapping RequestParam RequestParam RequestBody PathVariable RequestPart 参数传递 注意事项 ​编辑参数重命名 RequestParam ​编辑​编辑传递集合 RequestParam 传递JSON数据 ​编辑RequestBody ​…...

Java + Spring Boot + Mybatis 实现批量插入

在 Java 中使用 Spring Boot 和 MyBatis 实现批量插入可以通过以下步骤完成。这里提供两种常用方法&#xff1a;使用 MyBatis 的 <foreach> 标签和批处理模式&#xff08;ExecutorType.BATCH&#xff09;。 方法一&#xff1a;使用 XML 的 <foreach> 标签&#xff…...

【笔记】WSL 中 Rust 安装与测试完整记录

#工作记录 WSL 中 Rust 安装与测试完整记录 1. 运行环境 系统&#xff1a;Ubuntu 24.04 LTS (WSL2)架构&#xff1a;x86_64 (GNU/Linux)Rust 版本&#xff1a;rustc 1.87.0 (2025-05-09)Cargo 版本&#xff1a;cargo 1.87.0 (2025-05-06) 2. 安装 Rust 2.1 使用 Rust 官方安…...