当前位置: 首页 > news >正文

Linux ARMv8 异常向量表

http://blog.chinaunix.net/uid-69947851-id-5830546.html

本章接着《Linux内核启动》部分讲解,我们知道了在进入start_kernel之前,通过指令adr_l   x8, vectors;msr vbar_el1, x8设置了异常向量表,那么异常向量表的结构是怎么样的呢?在armv8中,每个异常的 向量地址不再是4字节,而是0x80字节,可以放更多的代码在向量表里面,因此

点击(此处)折叠或打开

  1. ENTRY(vectors)
  2.     kernel_ventry 1, sync_invalid // Synchronous EL1t
  3.     kernel_ventry 1, irq_invalid // IRQ EL1t
  4.     kernel_ventry 1, fiq_invalid // FIQ EL1t
  5.     kernel_ventry 1, error_invalid // Error EL1t
  6.     kernel_ventry 1, sync // Synchronous EL1h
  7.     kernel_ventry 1, irq // IRQ EL1h
  8.     kernel_ventry 1, fiq_invalid // FIQ EL1h
  9.     kernel_ventry 1, error // Error EL1h
  10.     kernel_ventry 0, sync // Synchronous 64-bit EL0
  11.     kernel_ventry 0, irq // IRQ 64-bit EL0
  12.     kernel_ventry 0, fiq_invalid // FIQ 64-bit EL0
  13.     kernel_ventry 0, error // Error 64-bit EL0
  14. #ifdef CONFIG_COMPAT
  15.     kernel_ventry 0, sync_compat, 32 // Synchronous 32-bit EL0
  16.     kernel_ventry 0, irq_compat, 32 // IRQ 32-bit EL0
  17.     kernel_ventry 0, fiq_invalid_compat, 32 // FIQ 32-bit EL0
  18.     kernel_ventry 0, error_compat, 32 // Error 32-bit EL0
  19. #else
  20.     kernel_ventry 0, sync_invalid, 32 // Synchronous 32-bit EL0
  21.     kernel_ventry 0, irq_invalid, 32 // IRQ 32-bit EL0
  22.     kernel_ventry 0, fiq_invalid, 32 // FIQ 32-bit EL0
  23.     kernel_ventry 0, error_invalid, 32 // Error 32-bit EL0
  24. #endif
  25. END(vectors)

从上图可以了解到一条kernel_ventry 为一个异常,但是kernel_ventry的展开需要对齐到0x80,不够的部分用nop填充。通过上图,我们可以知道armv8有4张向量表,每张向量表有4中异常:同步异常、irq异常、fiq异常、系统错误异常,而4张表分别对应:
1、发生中断时,异常等级不发生变化,并且不管怎么异常模式,sp只用SP_EL0
2、发生中断时,异常等级不发生变化,并且sp用对应异常私有的SP_ELx
3、发生中断时,异常等级发生变化,这种情况一般是用户态向内核态发生迁移,当前表示64位用户态向64位内核态发生迁移
4、发生中断时,异常等级发生变化,这种情况一般是用户态向内核态发生迁移,当前表示32位用户态向64位/32位内核发生迁移

下面我们来看看kernel_ventry的实现:

点击(此处)折叠或打开

  1. .macro kernel_ventry, el, label, regsize = 64
  2.     .align 7
  3.     sub sp, sp, #S_FRAME_SIZE // 将sp预留一个fram_size, 这个size 就是struct pt_regs的大小
  4. #ifdef CONFIG_VMAP_STACK
  5.     ....这里省略掉检查栈溢出的代码
  6. #endif
  7.     b el\()\el\()_\label    // 跳转到对应级别的异常处理函数, kernel_entry 1, irq为el1_irq
  8. .endm

对于向量表vectors中的kernel_ventry 1, irq ,  则 b el\()\el\()_\label跳转到el1_irq函数。 其中1表示的是从哪个异常模式产生的,比如是User->kernel就是0. , kernel->kernel就是1. 下面接着看el1_irq实现, el1_irq是内核运行期间产生了中断:

点击(此处)折叠或打开

  1. el1_irq:
  2.     kernel_entry 1    // 跟进入C函数需要压栈的道理一样, 这里进入内核空间,需要保存寄存器到pt_regs,也就是前面kernel_ventry  sp预留的空间当中。
  3.     enable_da_f
  4.     irq_handler   // 中断处理函数
  5. #ifdef CONFIG_PREEMPT
  6.     ldr w24, [tsk, #TSK_TI_PREEMPT] // get preempt count
  7.     cbnz w24, 1f // preempt count != 0
  8.     ldr x0, [tsk, #TSK_TI_FLAGS] // get flags
  9.     tbz x0, #TIF_NEED_RESCHED, 1f // needs rescheduling?
  10.     bl el1_preempt     // 支持内核抢占,会在这里判断是否需要调度到新的进程。
  11. 1:
  12. #endif
  13.     kernel_exit 1  // 这里是kernel_entry 1的逆向过程,弹出栈,就是还原寄存器
  14. ENDPROC(el1_irq)
  15. el1_preempt:  // 内核抢占
  16.     mov x24, lr  // 保存lr寄存器
  17. 1:  bl  preempt_schedule_irq        // irq en/disable is done inside
  18.     ldr x0, [tsk, #TSK_TI_FLAGS]    //获取新进程的标志TI_FLAGS
  19.     tbnz    x0, #TIF_NEED_RESCHED, 1b   // 如果还有需要调度的进程,继续抢占
  20.     ret x24

下面看看kernel_entry的实现:

点击(此处)折叠或打开

  1. .macro kernel_entry, el, regsize = 64
  2.     /* 这里用stp指令将x0-x29保存到预留的栈中,保存顺序为下面结构体顺序
  3.     struct pt_regs {
  4.         union {
  5.              struct user_pt_regs user_regs;
  6.              struct {
  7.                  u64 regs[31];
  8.                  u64 sp;
  9.                  u64 pc;
  10.                  u64 pstate;
  11.              };
  12.         };
  13.      u64 orig_x0;
  14.     #ifdef __AARCH64EB__
  15.      u32 unused2;
  16.      s32 syscallno;
  17.     #else
  18.      s32 syscallno;
  19.      u32 unused2;
  20.     #endif
  21.      u64 orig_addr_limit;
  22.     u64 unused; // maintain 16 byte alignment
  23.     u64 stackframe[2];
  24.     }
  25.    */
  26.     stp x0, x1, [sp, #16 * 0]  ->pt_regs.regs[0] 和pt_regs.regs[1]
  27.     stp x2, x3, [sp, #16 * 1]  // 以此类推
  28.     stp x4, x5, [sp, #16 * 2]
  29.     stp x6, x7, [sp, #16 * 3]
  30.     stp x8, x9, [sp, #16 * 4]
  31.     stp x10, x11, [sp, #16 * 5]
  32.     stp x12, x13, [sp, #16 * 6]
  33.     stp x14, x15, [sp, #16 * 7]
  34.     stp x16, x17, [sp, #16 * 8]
  35.     stp x18, x19, [sp, #16 * 9]
  36.     stp x20, x21, [sp, #16 * 10]
  37.     stp x22, x23, [sp, #16 * 11]
  38.     stp x24, x25, [sp, #16 * 12]
  39.     stp x26, x27, [sp, #16 * 13]
  40.     stp x28, x29, [sp, #16 * 14]
  41.     //如果el为0 表示从用户态产生的异常
  42.     .if \el == 0
  43.     clear_gp_regs   // 清除 x0-x29寄存器
  44.     mrs x21, sp_el0 // 将用户态的sp指针保存到x21寄存器
  45.     ldr_this_cpu tsk, __entry_task, x20 // 从当前per_cpu读取当前的task_struct地址
  46.     ldr x19, [tsk, #TSK_TI_FLAGS] // 获取task->flag标记
  47.     disable_step_tsk x19, x20 // exceptions when scheduling.
  48.     .else
  49.     // 从内核状态产生的异常
  50.     add x21, sp, #S_FRAME_SIZE  // X21保存压入pt_regs数据之前的栈地址,也就是异常时,内核的栈地址
  51.     get_thread_info tsk   // 这里是从sp_el0从获取到当前task_struct结构,在启动篇看到,内核状态的时候,sp_el0用于保存内核的task_struct结构,用户态的时候, 这个sp_el0是用户态的sp
  52.     /* 保存task's original addr_limit 然后设置USER_DS */
  53.     ldr x20, [tsk, #TSK_TI_ADDR_LIMIT]
  54.     str x20, [sp, #S_ORIG_ADDR_LIMIT]
  55.     mov x20, #USER_DS
  56.     str x20, [tsk, #TSK_TI_ADDR_LIMIT]
  57.     .endif /* \el == 0 */
  58.     // x22保存异常地址
  59.     mrs x22, elr_el1
  60.     // x23保存程序状态寄存器
  61.     mrs x23, spsr_el1
  62.     stp lr, x21, [sp, #S_LR] // 将lr和sp保存到pt_regs->x[30], pt_rets->sp
  63.     // 如果发生在el1模式,则将x29和异常地址保存到pt_regs->stackframe
  64.     .if \el == 0
  65.     stp xzr, xzr, [sp, #S_STACKFRAME]
  66.     .else
  67.     stp x29, x22, [sp, #S_STACKFRAME]
  68.     .endif
  69.     add x29, sp, #S_STACKFRAME
  70.     stp x22, x23, [sp, #S_PC] // 将异常和程序状态 保存到pt_regs->pstate和pt__regs->pc
  71.     // 如果是el0->el1发了变迁, 那么将当前的task_struct给sp_el0保存
  72.     .if \el == 0
  73.     msr sp_el0, tsk
  74.     .endif
  75.     /*
  76.      * Registers that may be useful after this macro is invoked:
  77.      *
  78.      * x21 - aborted SP
  79.      * x22 - aborted PC
  80.      * x23 - aborted PSTATE
  81.     */
  82. .endm

irq_handler为中断实现函数,具体实现如下:

点击(此处)折叠或打开

  1. .macro irq_handler
  2.     ldr_l x1, handle_arch_irq   // 将handle_arch_irq的地址放入x1寄存器
  3.     mov x0, sp
  4.     irq_stack_entry  // 中断入口, 这里主要是切换成中断栈
  5.     blr x1          // 跳转到handle_arch_irq函数运行,这个函数是gic驱动加载的时候设置的,否则是invilid
  6.     irq_stack_exit
  7. .endm
  8. //C语言设置回调函数
  9. int __init set_handle_irq(void (*handle_irq)(struct pt_regs *))
  10. {
  11.     if (handle_arch_irq)
  12.         return -EBUSY;
  13.     handle_arch_irq = handle_irq;
  14.     return 0;
  15. }
     

点击(此处)折叠或打开

  1. .macro irq_stack_entry
  2.     mov x19, sp // 保存当前sp到x19
  3.     /*
  4.      * 判断当前栈是不是中断栈, 如果是任务栈,就从per_cpu中读取中断栈地址,并切换到中断栈
  5.      */
  6.     ldr x25, [tsk, TSK_STACK]
  7.     eor x25, x25, x19
  8.     and x25, x25, #~(THREAD_SIZE - 1)
  9.     cbnz x25, 9998f
  10.     ldr_this_cpu x25, irq_stack_ptr, x26  // 读取per_cpu的irq_stack_ptr
  11.     mov x26, #IRQ_STACK_SIZE
  12.     add x26, x25, x26
  13.     /* 切换到中断栈 */
  14.     mov sp, x26
  15. 9998:
  16. .endm

如果是用户态发生中断异常,则进入el0_irq, 实现如下:

点击(此处)折叠或打开

  1. el0_irq:
  2.     kernel_entry 0   // 和el1_irq一样,只是这传入的是0表示 用户态发生异常
  3.     enable_da_f
  4.     ct_user_exit 
  5.     irq_handler  // 中断回调
  6.     b ret_to_user  // 中断返回
  7. ENDPROC(el0_irq)

点击(此处)折叠或打开

  1. work_pending:
  2.     mov x0, sp // 'regs'
  3.     bl do_notify_resume     // 用户抢占调度和处理信号
  4.     ldr x1, [tsk, #TSK_TI_FLAGS] // re-check for single-step
  5.     b finish_ret_to_user
  6. ret_to_user:
  7.     disable_daif
  8.     ldr x1, [tsk, #TSK_TI_FLAGS]
  9.     and x2, x1, #_TIF_WORK_MASK
  10.     cbnz x2, work_pending   // 判断是否有信号或者任务挂起
  11. finish_ret_to_user:
  12.     enable_step_tsk x1, x2
  13.     kernel_exit 0           // 恢复栈
  14. ENDPROC(ret_to_user)

do_notify_resume函数用于用户抢占和信号处理, 实现大概如下:

点击(此处)折叠或打开

  1. asmlinkage void do_notify_resume(struct pt_regs *regs,
  2.                  unsigned long thread_flags)
  3. {
  4.     trace_hardirqs_off();
  5.     do {
  6.         /* Check valid user FS if needed */
  7.         addr_limit_user_check();
  8.         if (thread_flags & _TIF_NEED_RESCHED) {
  9.             /* Unmask Debug and SError for the next task */
  10.             local_daif_restore(DAIF_PROCCTX_NOIRQ);
  11.             schedule();   // 重新调度新的进程
  12.         } else {
  13.             local_daif_restore(DAIF_PROCCTX);
  14.             if (thread_flags & _TIF_UPROBE)
  15.                 uprobe_notify_resume(regs);
  16.             if (thread_flags & _TIF_SIGPENDING)
  17.                 do_signal(regs);   // 信号处理
  18.             if (thread_flags & _TIF_NOTIFY_RESUME) {
  19.                 clear_thread_flag(TIF_NOTIFY_RESUME);
  20.                 tracehook_notify_resume(regs);  // 工作队列
  21.                 rseq_handle_notify_resume(NULL, regs);
  22.             }
  23.             if (thread_flags & _TIF_FOREIGN_FPSTATE)
  24.                 fpsimd_restore_current_state();
  25.         }
  26.         local_daif_mask();
  27.         thread_flags = READ_ONCE(current_thread_info()->flags);
  28.     } while (thread_flags & _TIF_WORK_MASK);
  29. }

至于el1_sync同步异常(包含系统调用,数据异常,指令异常等)这里就不多做说明了, 原理是一样的,如
1、数据异常:el0/1_sync->el1_da->do_mem_abort->do_page_fault.
2、系统调用:el0_sync->el0_svc->el0_svc_handler->el0_svc_common(__NR_syscalls, sys_call_table)->invoke_syscall

相关文章:

Linux ARMv8 异常向量表

http://blog.chinaunix.net/uid-69947851-id-5830546.html 本章接着《Linux内核启动》部分讲解,我们知道了在进入start_kernel之前,通过指令adr_l x8, vectors;msr vbar_el1, x8设置了异常向量表,那么异常向量表的结构是怎么样…...

C++基类和派生类的内存分配,多态的实现

目录 基类和派生类的内存分配基类和派生类的成员归属多态的实现 基类和派生类的内存分配 类包括成员变量(data member)和成员函数(member function)。 成员变量分为静态数据(static data)和非静态数据&…...

C/C++基础

C 二进制 问题:二进制怎么表示整数、小数、正数、负数,如何存储?加减乘除怎么运算(见文章《计算机加减乘除本质》)? 变量 c定义一个变量的时候,需要事先定义变量大小和变量类型。 //有符号…...

MySQL基础练习题

数据表介绍 --1.学生表 Student(SId,Sname,Sage,Ssex) --SId 学生编号,Sname 学生姓名,Sage 出生年月,Ssex 学生性别 --2.课程表 Course(CId,Cname,TId) --CId 课程编号,Cname 课程名称,TId 教师编号 --3.教师表 Teacher(TId,Tname) --TId 教师编号,Tname 教师姓名 --4.成绩…...

【C语言学习笔记 --- 动态内存管理】

C语言程序设计笔记---029 C语言之动态内存管理1、介绍动态内存管理2、动态内存函数的介绍2.1、malloc和free函数2.2、calloc函数2.3、realloc函数 3、动态内存管理过程中,一些常见的错误3.1、对NULL指针的解引用操作3.2、对动态内存开辟的空间的越界访问3.3、对非动…...

Nougat来了,能否成为pdf格式转换的新神器?

Nougat来了,能否成为pdf格式转换的新神器? 论文链接:https://arxiv.org/pdf/2308.13418v1.pdf 项目地址:https://github.com/facebookresearch/nougat What happened?🤨 科学知识主要存储在书籍和科学期…...

C++文件和流

到目前为止,我们已经使用了 iostream 标准库,它提供了 cin 和 cout 方法分别用于从标准输入读取流和向标准输出写入流。 本教程介绍如何从文件读取流和向文件写入流。这就需要用到 C 中另一个标准库 fstream,它定义了三个新的数据类型&#x…...

代码随想录算法训练营第23期day31|贪心算法理论基础、455.分发饼干、376. 摆动序列、53. 最大子序和

目录 一、贪心算法理论基础 二、(leetcode 455)分发饼干 三、(leetcode 376)摆动序列 四、(leetcode 53)最大子序和 一、贪心算法理论基础 1.什么是贪心 贪心的本质是选择每一阶段的局部最优&#xf…...

mdadm命令详解及实验过程

mdadm命令详解及实验过程 ⼀.概念 mdadm是multiple devices admin的简称,它是Linux下的⼀款标准的软件 RAID 管理⼯具,作者是Neil Brown ⼆.特点 mdadm能够诊断、监控和收集详细的阵列信息 mdadm是⼀个单独集成化的程序⽽不是⼀些分散程序的集合&#…...

推荐几个程序员必逛的个人技术博客网站

1、美团技术团队 地 址: 美团技术团队简 介:美团技术团队的博客,干货满满。推荐指数:⭐⭐⭐⭐⭐ ​ 2、阮一峰的网络日志 地 址: 阮一峰的个人网站 - Ruan YiFengs Personal Website简 介:大神阮一峰,博客风格真正…...

Python桌面应用之XX学院水卡报表查询系统(Tkinter+cx_Oracle)

一、功能样式 Python桌面应用之XX学院水卡报表查询系统功能: 连接Oracle数据库,查询XX学院水卡操作总明细报表,汇总数据报表,个人明细报表,进行预览并且支持导出报表 1.总明细报表样式 2.汇总明细样式 3.个人明细…...

ubuntu 中使用Qt连接MMSQl,报错libqsqlodbc.so: undefined symbol: SQLAllocHandle

Qt4.8.7的源码编译出来的libqsqlodbc.so,在使用时报错libqsqlodbc.so: undefined symbol: SQLAllocHandle,需要在编译libqsqlodbc.so 的项目pro文件加上LIBS -L/usr/local/lib -lodbc。 这里的路径根据自己的实际情况填写。 编辑: 使用uni…...

笔试,猴子吃香蕉,多线程写法

package demo;import java.util.concurrent.CountDownLatch;/*** description: 猴子吃香蕉* author: wxm* create: 2023-10-23 14:01**/ public class Main {public static void main(String[] args) throws InterruptedException {Monkey[] m new Monkey[3];Resource r new …...

安装docker ,更换docker版本

docker dockerd & containerd Dockerd(Docker 守护进程)在其底层使用 Containerd 来管理容器。Containerd 是一个开源的容器运行时管理器,由 Docker 公司于2017年开发并开源,它负责实际的容器生命周期管理。 以下是 Docker 守…...

英语小作文写作模板及步骤(1)

...

编写hello驱动程序

hello的驱动编写 编写驱动程序的步骤 1.确定主设备号,也可以让内核分配 2.定义自己的 file_operations 结构体 3.实现对应的 drv_open/drv_read/drv_write 等函数,填入 file_operations 结构 体 4.把 file_operations 结构体告诉内核:regist…...

ZYNQ中断例程

GPIO 中断系统初始化流程: 第一步:初始化 cpu 的异常处理功能 第二步:初始化中断控制器 第三步:向 CPU 注册异常处理回调函数; 第四步:将中断控制器中的对应中断 ID 的中断与中断控制器相连接 第五步:设置 …...

常用linux命令 linux_cmd_sheet

查看文件大小 ls -al 显示每个文件的kb大小 查看系统日志 dmesg -T | tail 在 top 命令中,RES 和 VIRT(或者 total-vm)是用来表示进程内存使用的两个不同指标,它们之间有以下区别: RES(Resident Set Size…...

【proteus】8086 写一个汇编程序并调试

参考书籍:微机原理与接口技术——基于8086和Proteus仿真(第3版)p103-105,p119-122. 参考程序是p70,例4-1 在上一篇的基础上: 创建项目和汇编文件 写一个汇编程序并编译 双击8086的元件图: …...

大数据之LibrA数据库常见术语(四)

Failover 指当某个节点出现故障时,自动切换到备节点上的过程。反之,从备节点上切换回来的过程称为Failback。 Freeze 在事务ID耗尽时由AutoVacuum Worker进程自动执行的操作。FusionInsight LibrA会把事务ID记在行头,在一个事务取得一行时&…...

三维GIS开发cesium智慧地铁教程(5)Cesium相机控制

一、环境搭建 <script src"../cesium1.99/Build/Cesium/Cesium.js"></script> <link rel"stylesheet" href"../cesium1.99/Build/Cesium/Widgets/widgets.css"> 关键配置点&#xff1a; 路径验证&#xff1a;确保相对路径.…...

Cesium1.95中高性能加载1500个点

一、基本方式&#xff1a; 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...

聊聊 Pulsar:Producer 源码解析

一、前言 Apache Pulsar 是一个企业级的开源分布式消息传递平台&#xff0c;以其高性能、可扩展性和存储计算分离架构在消息队列和流处理领域独树一帜。在 Pulsar 的核心架构中&#xff0c;Producer&#xff08;生产者&#xff09; 是连接客户端应用与消息队列的第一步。生产者…...

蓝桥杯 2024 15届国赛 A组 儿童节快乐

P10576 [蓝桥杯 2024 国 A] 儿童节快乐 题目描述 五彩斑斓的气球在蓝天下悠然飘荡&#xff0c;轻快的音乐在耳边持续回荡&#xff0c;小朋友们手牵着手一同畅快欢笑。在这样一片安乐祥和的氛围下&#xff0c;六一来了。 今天是六一儿童节&#xff0c;小蓝老师为了让大家在节…...

根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:

根据万维钢精英日课6的内容&#xff0c;使用AI&#xff08;2025&#xff09;可以参考以下方法&#xff1a; 四个洞见 模型已经比人聪明&#xff1a;以ChatGPT o3为代表的AI非常强大&#xff0c;能运用高级理论解释道理、引用最新学术论文&#xff0c;生成对顶尖科学家都有用的…...

Fabric V2.5 通用溯源系统——增加图片上传与下载功能

fabric-trace项目在发布一年后,部署量已突破1000次,为支持更多场景,现新增支持图片信息上链,本文对图片上传、下载功能代码进行梳理,包含智能合约、后端、前端部分。 一、智能合约修改 为了增加图片信息上链溯源,需要对底层数据结构进行修改,在此对智能合约中的农产品数…...

论文笔记——相干体技术在裂缝预测中的应用研究

目录 相关地震知识补充地震数据的认识地震几何属性 相干体算法定义基本原理第一代相干体技术&#xff1a;基于互相关的相干体技术&#xff08;Correlation&#xff09;第二代相干体技术&#xff1a;基于相似的相干体技术&#xff08;Semblance&#xff09;基于多道相似的相干体…...

Linux 中如何提取压缩文件 ?

Linux 是一种流行的开源操作系统&#xff0c;它提供了许多工具来管理、压缩和解压缩文件。压缩文件有助于节省存储空间&#xff0c;使数据传输更快。本指南将向您展示如何在 Linux 中提取不同类型的压缩文件。 1. Unpacking ZIP Files ZIP 文件是非常常见的&#xff0c;要在 …...

django blank 与 null的区别

1.blank blank控制表单验证时是否允许字段为空 2.null null控制数据库层面是否为空 但是&#xff0c;要注意以下几点&#xff1a; Django的表单验证与null无关&#xff1a;null参数控制的是数据库层面字段是否可以为NULL&#xff0c;而blank参数控制的是Django表单验证时字…...

rknn toolkit2搭建和推理

安装Miniconda Miniconda - Anaconda Miniconda 选择一个 新的 版本 &#xff0c;不用和RKNN的python版本保持一致 使用 ./xxx.sh进行安装 下面配置一下载源 # 清华大学源&#xff08;最常用&#xff09; conda config --add channels https://mirrors.tuna.tsinghua.edu.cn…...