当前位置: 首页 > news >正文

基于人工蜂鸟优化的BP神经网络(分类应用) - 附代码

基于人工蜂鸟优化的BP神经网络(分类应用) - 附代码

文章目录

  • 基于人工蜂鸟优化的BP神经网络(分类应用) - 附代码
    • 1.鸢尾花iris数据介绍
    • 2.数据集整理
    • 3.人工蜂鸟优化BP神经网络
      • 3.1 BP神经网络参数设置
      • 3.2 人工蜂鸟算法应用
    • 4.测试结果:
    • 5.Matlab代码

摘要:本文主要介绍如何用人工蜂鸟算法优化BP神经网络,利用鸢尾花数据,做一个简单的讲解。

1.鸢尾花iris数据介绍

本案例利用matlab公用的iris鸢尾花数据,作为测试数据,iris数据是特征为4维,类别为3个类别。数据格式如下:

特征1特征2特征3类别
单组iris数据5.32.11.21

3种类别用1,2,3表示。

2.数据集整理

iris数据总共包含150组数据,将其分为训练集105组,测试集45组。如下表所示:

训练集(组)测试集(组)总数据(组)
10545150

类别数据处理:原始数据类别用1,2,3表示为了方便神经网络训练,类别1,2,3分别用1,0,0;0,1,0;0,0,1表示。

当进行数据训练对所有输入特征数据均进行归一化处理。

3.人工蜂鸟优化BP神经网络

3.1 BP神经网络参数设置

通常而言,利用智能算法一般优化BP神经网络的初始权值和阈值来改善BP神经网络的性能。本案例基于iris数据,由于iris数据维度不高,采用简单的BP神经网络。神经网络参数如下:

神经网络结构

图1.神经网络结构

神经网络参数如下:

%创建神经网络
inputnum = 4;     %inputnum  输入层节点数 4维特征
hiddennum = 10;     %hiddennum  隐含层节点数
outputnum = 3;     %outputnum  隐含层节点数
net = newff( minmax(input) , [hiddennum outputnum] , { 'logsig' 'purelin' } , 'traingdx' ) ;
%设置训练参数
net.trainparam.show = 50 ;
net.trainparam.epochs = 200 ;
net.trainparam.goal = 0.01 ;
net.trainParam.lr = 0.01 ;

3.2 人工蜂鸟算法应用

人工蜂鸟算法原理请参考:https://blog.csdn.net/u011835903/article/details/128386612

人工蜂鸟算法的参数设置为:

popsize = 10;%种群数量Max_iteration = 15;%最大迭代次数
lb = -5;%权值阈值下边界
ub = 5;%权值阈值上边界
%  inputnum * hiddennum + hiddennum*outputnum 为阈值的个数
%  hiddennum + outputnum 为权值的个数
dim =  inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum ;%  inputnum * hiddennum + hiddennum*outputnum维度

这里需要注意的是,神经网络的阈值数量计算方式如下:

本网络有2层:

第一层的阈值数量为:4*10 = 40; 即inputnum * hiddennum;

第一层的权值数量为:10;即hiddennum;

第二层的阈值数量为:3*10 = 30;即hiddenum * outputnum;

第二层权值数量为:3;即outputnum;

于是可知我们优化的维度为:inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum = 83;

适应度函数值设定:

本文设置适应度函数如下:
f i t n e s s = a r g m i n ( T r a i n D a t a E r r o r R a t e + T e s t D a t a E r r o r R a t e ) fitness = argmin(TrainDataErrorRate + TestDataErrorRate) fitness=argmin(TrainDataErrorRate+TestDataErrorRate)
其中TrainDataErrorRate,TestDataErrorRate分别为训练集和测试集的错误分类率。适应度函数表明我们最终想得到的网络是在测试集和训练集上均可以得到较好结果的网络。

4.测试结果:

从人工蜂鸟算法的收敛曲线可以看到,整体误差是不断下降的,说明人工蜂鸟算法起到了优化的作用:

在这里插入图片描述
在这里插入图片描述

5.Matlab代码

相关文章:

基于人工蜂鸟优化的BP神经网络(分类应用) - 附代码

基于人工蜂鸟优化的BP神经网络(分类应用) - 附代码 文章目录 基于人工蜂鸟优化的BP神经网络(分类应用) - 附代码1.鸢尾花iris数据介绍2.数据集整理3.人工蜂鸟优化BP神经网络3.1 BP神经网络参数设置3.2 人工蜂鸟算法应用 4.测试结果…...

两个list中存放相同的对象,一个是页面导入,一个是从数据库查询,外部传入一个集合存放的是对象的属性名称,根据属性名称处理两个list

需求:两个list中存放相同的对象,一个是页面导入,一个是从数据库查询,外部传入一个集合存放的是对象的属性名称.要求根据传入的属性(多个)判断两个list中是否有重复的对象, 如果重复则删除数据库的list, 然后合并两个list. /*** 处理导入和数据库重复数据* param list* param l…...

为什么C++能搜到的框架介绍都好抽象?

为什么C能搜到的框架介绍都好抽象? 那是因为c每次都要自建生态 随便一个库发展到一定阶段,它就开始跨界,做得又大又全 结果就是,虽然都叫c,但其实是由一大堆不同生态组成的统称 c跟c的差异,比java跟c的差…...

人工智能(6):机器学习基础环境安装与使用

1 库的安装 整个机器学习基础阶段会用到Matplotlib、Numpy、Pandas等库,为了统一版本号在环境中使用,将所有的库及其版本放到了文件requirements.txt当中,然后统一安装 新建一个用于人工智能环境的虚拟环境 mkvirtualenv ai matplotlib3.8…...

电力巡检/电力抢修行业解决方案:AI+视频技术助力解决巡检监管难题

一、行业背景 随着国民经济的蓬勃发展,工业用电和居民用电需求迅速增加,电厂、变电站、输电线路高负荷运转,一旦某个节点发生故障,对生产、生活造成巨大的影响。目前电力行业生产现场人员、设备较多,而生产监督员有限…...

区块链轻节点的问答

EOS的nodeos并没有获取merkle proof的功能,那应该怎样获取merkle proof nodeos(EOS区块链节点软件)本身并不提供Merkle Proof的功能,而是全节点或其他数据源通常提供Merkle Proof。获取Merkle Proof的过程通常需要与全节点或区块浏…...

常用Web安全扫描工具汇整

漏洞扫描是一种安全检测行为,更是一类重要的网络安全技术,它能够有效提高网络的安全性,而且漏洞扫描属于主动的防范措施,可以很好地避免黑客攻击行为,做到防患于未然。 1、AWVS Acunetix Web Vulnerability Scanner&a…...

查看当前cmake版本支持哪些版本的Visual Studio

不同版本的的cmake对Visual Studio的版本支持不同,以下图示展示了如何查看当前安装的cmake支持哪些版本的Visual Studio。 1.打开cmake-gui 2.查看cmake支持哪些版本的Visual Studio...

岩土工程桥梁监测中智能振弦传感器的应用方案

岩土工程桥梁监测中智能振弦传感器的应用方案 岩土工程桥梁监测是重要的安全保障措施,而智能振弦传感器是其中一种有效的监测手段。它可以通过测量桥梁振动的频率和幅值,监测桥梁的健康状态,预测可能出现的问题,并及时采取措施进…...

上云容灾如何实现碳中和-万博智云受邀参加1024程序员节数据技术论坛并发表演讲

近日,2023长沙中国1024程序员节在长沙召开。 长沙中国1024程序员节继2020年后已成功连续举办三届,逐步成为 IT 行业引领技术前沿、推动应用创新发展的高影响力年度盛会。是 IT 领域新技术、新产品、新服务的重要发布平台。 万博智云CEO Michael受邀参加…...

蓝桥杯每日一题2023.10.26

测试次数 - 蓝桥云课 (lanqiao.cn) 题目描述 题目分析 对于本题我们可以使用动态规划来分析 dp[i][j]代表剩余i层,j台手机的情况下对应的测试数量 分类进行讨论一下: 1.当只剩下一台手机的时候,只能从第一层一层一层往上尝试&#xff0c…...

[已解决]安装的明明是pytorch-gpu,但是condalist却显示cpu版本,而且torch.cuda.is_available 也是flase

问题; 安装了gpu版本的pytorch,但是显示的torch.cuda.is_available()却是flase。 conda list查看 版本显示只有cpuonly 在网上找了半天,也没有解决办法。 仔细看了一下,发现,有个单独的包叫cpuonly,不知道…...

[数据分析与可视化] 基于Python绘制简单动图

动画是一种高效的可视化工具,能够提升用户的吸引力和视觉体验,有助于以富有意义的方式呈现数据可视化。本文的主要介绍在Python中两种简单制作动图的方法。其中一种方法是使用matplotlib的Animations模块绘制动图,另一种方法是基于Pillow生成…...

MySQL基础入门教程(InsCode AI 创作助手)

MySQL基础入门教程:从安装到查询 MySQL是一种广泛使用的开源关系型数据库管理系统,它提供了强大的数据存储和查询功能。无论是新手还是有经验的开发人员,本篇技术博客将带深入了解MySQL的基础知识,包括安装、配置、数据库操作和查…...

【Linux】 rpm安装包保存到本地并批量安装

目录 一、开启rpm安装包缓存到本地仓库 1. 修改yum.conf文件 2. 清理yum缓存 3. yum命令安装软件包 二、如何将rpm安装包保存到指定目录 方法一:yumdownloader 1. 安装yum-utils  2. yumdownloader命令参数说明 3. yumdownloader安装示例 方法二&#xff…...

数据分析案例-某公司员工数据信息可视化(文末送书)

🤵‍♂️ 个人主页:艾派森的个人主页 ✍🏻作者简介:Python学习者 🐋 希望大家多多支持,我们一起进步!😄 如果文章对你有帮助的话, 欢迎评论 💬点赞&#x1f4…...

浅谈wheel滚轮事件

<divonWheel{(ee) > {// new WheelEvent(自定义,e) 获取 e[wheelDelta],e[deltaY] 判断滚轮方向var e new WheelEvent(syntheticWheel,ee)console.log(滚动触发事件, e,ee);console.log(滚动触发事件e.wheelDelta, e[wheelDelta],e[deltaY]);console.log(滚动触发事件e.…...

FTP服务器操作手册

FTP服务器(File Transfer Protocol Server)是在互联网上提供文件存储和访问服务的计算机&#xff0c;它们依照FTP协议提供服务。FTP协议是File Transfer Protocol(文件传输协议)&#xff0c;专门用来传输文件的协议。FTP服务器是企业里经常用到的服务器&#xff0c;今天就介绍一…...

Android使用Glide类加载服务器中的图片

Glide类用于从服务器中获取图片并加载进ImageView。 一、添加依赖 Glide为第三方框架&#xff0c;使用时需添加依赖&#xff1a; 在 Gradle Scripts / build.gradle(Module:app) / dependencies方法 中添加 implementation com.github.bumptech.glide:glide:4.12.0 添加后…...

【打靶】vulhub打靶复现系列3---Chronos

【打靶】vulhub打靶复现系列3---Chronos 一、主机探测 结合之前的方法&#xff08;arp探测、ping检测&#xff09;&#xff0c;因为我们的靶机和攻击机都在第二层&#xff0c;所以打靶时候我们更依赖arp协议 tips&#xff1a;我在运行期间发现&#xff0c;netdiscover窗口没关…...

Linux 文件类型,目录与路径,文件与目录管理

文件类型 后面的字符表示文件类型标志 普通文件&#xff1a;-&#xff08;纯文本文件&#xff0c;二进制文件&#xff0c;数据格式文件&#xff09; 如文本文件、图片、程序文件等。 目录文件&#xff1a;d&#xff08;directory&#xff09; 用来存放其他文件或子目录。 设备…...

Spark 之 入门讲解详细版(1)

1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室&#xff08;Algorithms, Machines, and People Lab&#xff09;开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目&#xff0c;8个月后成为Apache顶级项目&#xff0c;速度之快足见过人之处&…...

c++ 面试题(1)-----深度优先搜索(DFS)实现

操作系统&#xff1a;ubuntu22.04 IDE:Visual Studio Code 编程语言&#xff1a;C11 题目描述 地上有一个 m 行 n 列的方格&#xff0c;从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子&#xff0c;但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...

【C语言练习】080. 使用C语言实现简单的数据库操作

080. 使用C语言实现简单的数据库操作 080. 使用C语言实现简单的数据库操作使用原生APIODBC接口第三方库ORM框架文件模拟1. 安装SQLite2. 示例代码:使用SQLite创建数据库、表和插入数据3. 编译和运行4. 示例运行输出:5. 注意事项6. 总结080. 使用C语言实现简单的数据库操作 在…...

Device Mapper 机制

Device Mapper 机制详解 Device Mapper&#xff08;简称 DM&#xff09;是 Linux 内核中的一套通用块设备映射框架&#xff0c;为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程&#xff0c;并配以详细的…...

Web 架构之 CDN 加速原理与落地实践

文章目录 一、思维导图二、正文内容&#xff08;一&#xff09;CDN 基础概念1. 定义2. 组成部分 &#xff08;二&#xff09;CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 &#xff08;三&#xff09;CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 &#xf…...

ABAP设计模式之---“简单设计原则(Simple Design)”

“Simple Design”&#xff08;简单设计&#xff09;是软件开发中的一个重要理念&#xff0c;倡导以最简单的方式实现软件功能&#xff0c;以确保代码清晰易懂、易维护&#xff0c;并在项目需求变化时能够快速适应。 其核心目标是避免复杂和过度设计&#xff0c;遵循“让事情保…...

安卓基础(aar)

重新设置java21的环境&#xff0c;临时设置 $env:JAVA_HOME "D:\Android Studio\jbr" 查看当前环境变量 JAVA_HOME 的值 echo $env:JAVA_HOME 构建ARR文件 ./gradlew :private-lib:assembleRelease 目录是这样的&#xff1a; MyApp/ ├── app/ …...

Linux 内存管理实战精讲:核心原理与面试常考点全解析

Linux 内存管理实战精讲&#xff1a;核心原理与面试常考点全解析 Linux 内核内存管理是系统设计中最复杂但也最核心的模块之一。它不仅支撑着虚拟内存机制、物理内存分配、进程隔离与资源复用&#xff0c;还直接决定系统运行的性能与稳定性。无论你是嵌入式开发者、内核调试工…...

tomcat指定使用的jdk版本

说明 有时候需要对tomcat配置指定的jdk版本号&#xff0c;此时&#xff0c;我们可以通过以下方式进行配置 设置方式 找到tomcat的bin目录中的setclasspath.bat。如果是linux系统则是setclasspath.sh set JAVA_HOMEC:\Program Files\Java\jdk8 set JRE_HOMEC:\Program Files…...