使用FastAPI部署Ultralytics YOLOv5模型
YOLO是You Only Look Once(你只看一次)的缩写,它具有识别图像中的物体的非凡能力,在日常应用中会经常被使用。所以在本文中,我们将介绍如何使用FastAPI的集成YOLOv5,这样我们可以将YOLOv5做为API对外提供服务。

Python有几个web框架,其中最突出的两个是Flask和FastAPI。Flask是一个轻量级且灵活的框架,非常适合中小型web应用程序,而FastAPI是一个相对较新的框架,旨在快速轻松地构建api。
FastAPI
FastAPI是一个现代的web框架,可以用于基于OpenAPI标准使用Python 3.6+构建api。FastAPI提供的代码只需进行最小的调整即可用于生产环境。FastAPI与ASGI(异步服务器网关接口)的集成使其成为最快的Python框架之一。
设置环境
建立虚拟环境是软件开发和数据科学中至关重要的第一步。虽然并不总是强制性的,但强烈建议这样做。虚拟环境隔离了项目的依赖项,确保了稳定性和兼容性。这种做法简化了版本管理,使项目更有组织性和可维护性。简而言之,它是提高项目质量的最佳实践。
python3 -m venv my_project
然后使用命令激活来启动虚拟环境
my_project/bin/activate
训练定制YOLOv5模型
我们这里不介绍详细的训练流程,第一是因为官方有代码可以直接使用,第二是因为我们主要介绍部署的步骤。
这里使用6种食物数据集进行训练,这些数据集在Roboflow上进行了预先注释,可以对鸡翅,炸薯条,饺子,热狗,甜甜圈,华夫饼图像进行分类。如果你有自己的图像并想要创建一个数据集,你也可以在Roboflow上手动注释它们。
python train.py - img 416 - batch 16 - epochs 100 - data {dataset.location}/data.yaml - cfg ./models/custom_yolov5s.yaml - weights '' - name yolov5s_results - cache
只需要上面一句就可以进行训练,结果如下
精度§: 0.763(所有类别的平均值)
召回率®: 0.662(所有类别的平均值)
mAP50 (IoU 0.5的平均精度):0.712(所有类别的平均值)
mAP50-95: 0.4(所有类别的平均值)


使用FastAPI进行模型推理
下面是一个最简单的项目目录结构模板:
├── README.md├── main.py # The main program├── model│ ├── __init__.py│ └── best.pt # Custom training model ├── requirements.in # Used to generate requirements.txt├── requirements.txt # Install dependencies: pip install -r requirements.txt├── segmentation.py # Importing the local YOLOv5 and resize images└── yolov5 # You can obtain this from https://github.com/ultralytics/yolov5
main.py
这是一个有3个函数:
@app.get(’ /notify/v1/health '),这是检查应用程序运行状况的端点。它返回一个带有消息“OK”的JSON响应。这个端点用于检查Kubernetes的readinessProbe和liveessprobe。
@app.post(" /object-to-json "),这个端点处理图像中对象的检测,并以JSON格式返回结果。它需要一个图像文件作为输入。
@app.post(" /object-to-img "),这个端点执行对象检测并返回带有注释对象的图像。它还需要一个图像文件作为输入,并将带注释的图像作为响应发送。
#import statementfromfastapiimportFastAPI, File#building the APIfromsegmentationimportget_yolov5, get_image_from_bytes#segmentation functionsfromstarlette.responsesimportResponse#handling API responsesimportiofromPILimportImageimportjsonfromfastapi.middleware.corsimportCORSMiddleware#initialize and obtain the modelmodel=get_yolov5() #FastAPI application setupapp=FastAPI(title="Custom YOLOV5 Machine Learning API",description="""Obtain object value out of imageand return image and json result""",version="0.0.1",)#CORS (Cross-Origin Resource Sharing) middleware, allows the API to be accessed from different domains or origins. origins= ["http://localhost","http://localhost:8000","*"]app.add_middleware(CORSMiddleware,allow_origins=origins,allow_credentials=True,allow_methods=["*"],allow_headers=["*"],)#Checking health of application, returns “OK” JSON response@app.get('/notify/v1/health')defget_health():"""Usage on K8SreadinessProbe:httpGet: path: /notify/v1/healthport: 80livenessProbe:httpGet:path: /notify/v1/healthport: 80:return:dict(msg='OK')"""returndict(msg='OK')@app.post("/object-to-json")asyncdefdetect_food_return_json_result(file: bytes=File(...)):input_image=get_image_from_bytes(file)results=model(input_image)detect_res=results.pandas().xyxy[0].to_json(orient="records") # JSON img1 predictionsdetect_res=json.loads(detect_res)return {"result": detect_res}@app.post("/object-to-img")asyncdefdetect_food_return_base64_img(file: bytes=File(...)):input_image=get_image_from_bytes(file)results=model(input_image)results.render() # updates results.imgs with boxes and labelsforimginresults.imgs:bytes_io=io.BytesIO()img_base64=Image.fromarray(img)img_base64.save(bytes_io, format="jpeg")returnResponse(content=bytes_io.getvalue(), media_type="image/jpeg")
segmentation.py定义了2个方法:
1、Get_yolov5():这是yolov5可以使用定制模型的地方。
Model = torch.hub.load('。/yolov5 ', ’ custom ', path= ’ ./model/best.pt ', source= ’ local ‘):它从本地目录加载自定义yolov5模型。’ custom ‘参数指定模型架构,’ ./model/best.pt ‘是定制训练模型文件的路径,’ source '表示模型位于本地。conf = 0.5:设置对象检测的置信度阈值。只有置信水平大于0.5的对象才会被包含在检测结果中。
2、Get_image_from_bytes():调整图像大小以确保与模型期望的兼容性。
input_image = image .open(io.BytesIO(binary_image)).convert(" RGB "):它读取二进制图像数据并将其转换为RGB格式的PIL (Python Imaging Library)图像。它计算图像的宽度和高度,并确定调整因子以适应指定的max_size。Resized_image是通过根据计算的尺寸调整输入图像的大小来创建的,确保它不超过最大大小。
启动项目
在终端上输入以下命令
uvicorn main:app — reload — host 0.0.0.0 — port 8000
成功运行程序时,它将看起来像这样

测试结果
在浏览器中打开http://127.0.0.1:8000/docs#/。你应该看到有3个端点的Open API文档:

/notify/v1/health 返回一个JSON响应,其中包含消息’ OK '。你可以通过点击try it out并执行来检查,输出如下:

/object-to-json 处理图像中对象的检测,并以JSON格式返回结果。它需要一个图像文件作为输入。

/object-to-img 执行对象检测并返回带有注释对象的图像。它还需要一个图像文件作为输入,并将带注释的图像作为响应发送。

这样我们的程序就完成了
总结
这里我们看到了yolov5模型的部署的完整过程,并且这个过程是可以应用到生产环境的。但是这里我们发现了一个新的命令 ‘uvicorn’.
Uvicorn 是基于 uvloop 和 httptools 构建的非常快速的 ASGI 服务器。因为 Uvicorn 是一个非常快速、可靠且易于使用的 ASGI 服务器,可以在处理大量并发连接时保持稳定和高效。Uvicorn 还支持 WebSocket 和 HTTP/2 等新特性,它符合 FastAPI 提倡的现代 Web 开发理念。所以使用 Uvicorn 作为 FastAPI 的 Web 服务器是一个很好的选择。
https://avoid.overfit.cn/post/c23627999f1a44689000105eb315180e
作者:auliyafirdaus
相关文章:
使用FastAPI部署Ultralytics YOLOv5模型
YOLO是You Only Look Once(你只看一次)的缩写,它具有识别图像中的物体的非凡能力,在日常应用中会经常被使用。所以在本文中,我们将介绍如何使用FastAPI的集成YOLOv5,这样我们可以将YOLOv5做为API对外提供服务。 Python有几个web框…...
A. Doremy‘s Paint 3
今天第一次打CF,不过鼠鼠被气死了 先说说战况,今天一发没A(赛场上),生活真是无奈,废物女友真是一点用没有 心里也很烦,什么压力都自己扛着。每天想尝试改变什么,又被现实掣肘&…...
深度学习_1 介绍;安装环境
深度学习 学习自李沐老师的课程。笔记主要以总结老师所讲解的内容以及我个人的想法为主,侵删! 课程链接:课程安排 - 动手学深度学习课程 (d2l.ai) 介绍 AI地图: 首先,AI 能对问题处理到什么地步?分为四…...
Python基础入门例程19-NP19 列表的长度(列表)
最近的博文: Python基础入门例程18-NP18 生成数字列表(列表)-CSDN博客 Python基础入门例程17-NP17 生成列表(列表)-CSDN博客 Python基础入门例程16-NP16 发送offer(列表)-CSDN博客 目录 描述 输入描述: 输出描述࿱…...
LeetCode 2558. 从数量最多的堆取走礼物
【LetMeFly】2558.从数量最多的堆取走礼物 力扣题目链接:https://leetcode.cn/problems/take-gifts-from-the-richest-pile/ 给你一个整数数组 gifts ,表示各堆礼物的数量。每一秒,你需要执行以下操作: 选择礼物数量最多的那一…...
【JVM】字节码文件的组成部分
🐌个人主页: 🐌 叶落闲庭 💨我的专栏:💨 c语言 数据结构 javaEE 操作系统 Redis 石可破也,而不可夺坚;丹可磨也,而不可夺赤。 JVM 一、字节码文件的组成部分1.1 iconst_0…...
STM32 TIM(四)编码器接口
STM32 TIM(四)编码器接口 编码器接口简介 Encoder Interface 编码器接口 编码器接口可接收增量(正交)编码器的信号,根据编码器旋转产生的正交信号脉冲,自动控制CNT自增或自减,从而指示编码器的…...
力扣第56题 合并区间 c++ 贪心
题目 56. 合并区间 中等 相关标签 数组 排序 以数组 intervals 表示若干个区间的集合,其中单个区间为 intervals[i] [starti, endi] 。请你合并所有重叠的区间,并返回 一个不重叠的区间数组,该数组需恰好覆盖输入中的所有区间 。 示例…...
php 日期
其中关于周的起止,使用date("N"),确保每周周一为起始,避免周日时出现作为新一周起始的情况 //获取上个月第一天 echo "上个月开始时间:".date(Y-m-01 00:00:00,strtotime(-1 month))."\r\n\r\n"; …...
食物链解读
[NOI2001] 食物链 题目描述 动物王国中有三类动物 A , B , C A,B,C A,B,C,这三类动物的食物链构成了有趣的环形。 A A A 吃 B B B, B B B 吃 C C C, C C C 吃 A A A。 现有 N N N 个动物,以 1 ∼ N 1 \sim N 1∼N 编号。…...
Day10配置文件日志多线程
配置文件 在企业开发过程中,我们习惯把一些需要灵活配置的数据放在一些文本文件中,而不是在Java代码写死 我们把这种存放程序配置信息的文件,统称为配置文件 properties 是一个Map集合(键值对集合),但是我…...
leetcode:1154. 一年中的第几天(python3解法)
难度:简单 给你一个字符串 date ,按 YYYY-MM-DD 格式表示一个 现行公元纪年法 日期。返回该日期是当年的第几天。 示例 1: 输入:date "2019-01-09" 输出:9 解释:给定日期是2019年的第九天。 示例…...
竞赛 深度学习图像修复算法 - opencv python 机器视觉
文章目录 0 前言2 什么是图像内容填充修复3 原理分析3.1 第一步:将图像理解为一个概率分布的样本3.2 补全图像 3.3 快速生成假图像3.4 生成对抗网络(Generative Adversarial Net, GAN) 的架构3.5 使用G(z)生成伪图像 4 在Tensorflow上构建DCGANs最后 0 前言 &#…...
flutter升级+生成drift文件
1. flutter升级 可以安装fvm进行flutter version manager FVM 安装笔记 - 掘金 (juejin.cn) 使用flutter upgrade, 但是没有效果, 可能需要到我的电脑中,更改高级系统设置;改变/增加环境变量;用来加上flutter官网获取信息的内…...
[AUTOSAR][诊断管理][ECU][$34] 下载请求
文章目录 一、简介二、服务请求报文定义肯定响应支持的NRC三、示例代码34_req_dowload.c一、简介 RequestDownload(0x34)—— 下载请求 这个服务主要是用来给ECU下载数据的,最常见的应用就是在bootloader中,程序下载工具会发起下载请求,以完成ECU程序的升级。 二、服务…...
C 标准库 - <errno.h>和<float.h>详解
目录 简介 常见库宏 简介 常见库宏 <errno.h> 简介 <errno.h>头文件定义了一个名为errno的全局变量,用于表示最近发生的错误代码。errno是一个整数变量,它的值通常是一个非零的错误代码,用于指示发生了什么类型的错误。也可以…...
对于如何学习的一点思考
目录 1、学习遇到的问题 2、问题分析 3、解决思路 1、学习遇到的问题 我们经常在学习一个知识时,经常会遇到知识点凌乱、读书效率低、缺乏长期记忆等问题,主要体现在: 知识点凌乱:花时间学习了很多技术点,但是由于…...
Ensemble Methods集成学习大比拼:性能、应用场景和可视化对比总结
集成学习(Ensemble Learning)是一种机器学习范式,其中多个模型(通常称为“弱学习器”)被训练以解决相同的问题,并且通过某种方式结合它们的预测以提高整体性能。这种方法的核心思想是,多个模型比单一模型更能准确地预测未知数据。在本文中,我们将探讨多种集成学习算法,…...
【2024秋招】2023-9-16 贝壳后端开发二面
1 自我介绍 2 秒杀系统 2.1 超卖怎么解决 3 redis 3.1 过期策略 3.2 过期算法 4 kafka 4.1 说一说你对kafka的了解 4.2 如何保证事务性消息 4.3 如何保证消息不丢失 4.4 消息队列的两种通信方式 点对点模式 如上图所示,点对点模式通常是基于拉取或者轮询…...
SpringCloud 微服务全栈体系(七)
第九章 Docker 一、什么是 Docker 微服务虽然具备各种各样的优势,但服务的拆分通用给部署带来了很大的麻烦。 分布式系统中,依赖的组件非常多,不同组件之间部署时往往会产生一些冲突。在数百上千台服务中重复部署,环境不一定一致…...
conda相比python好处
Conda 作为 Python 的环境和包管理工具,相比原生 Python 生态(如 pip 虚拟环境)有许多独特优势,尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处: 一、一站式环境管理:…...
MFC内存泄露
1、泄露代码示例 void X::SetApplicationBtn() {CMFCRibbonApplicationButton* pBtn GetApplicationButton();// 获取 Ribbon Bar 指针// 创建自定义按钮CCustomRibbonAppButton* pCustomButton new CCustomRibbonAppButton();pCustomButton->SetImage(IDB_BITMAP_Jdp26)…...
从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路
进入2025年以来,尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断,但全球市场热度依然高涨,入局者持续增加。 以国内市场为例,天眼查专业版数据显示,截至5月底,我国现存在业、存续状态的机器人相关企…...
蓝桥杯 2024 15届国赛 A组 儿童节快乐
P10576 [蓝桥杯 2024 国 A] 儿童节快乐 题目描述 五彩斑斓的气球在蓝天下悠然飘荡,轻快的音乐在耳边持续回荡,小朋友们手牵着手一同畅快欢笑。在这样一片安乐祥和的氛围下,六一来了。 今天是六一儿童节,小蓝老师为了让大家在节…...
Psychopy音频的使用
Psychopy音频的使用 本文主要解决以下问题: 指定音频引擎与设备;播放音频文件 本文所使用的环境: Python3.10 numpy2.2.6 psychopy2025.1.1 psychtoolbox3.0.19.14 一、音频配置 Psychopy文档链接为Sound - for audio playback — Psy…...
Java多线程实现之Thread类深度解析
Java多线程实现之Thread类深度解析 一、多线程基础概念1.1 什么是线程1.2 多线程的优势1.3 Java多线程模型 二、Thread类的基本结构与构造函数2.1 Thread类的继承关系2.2 构造函数 三、创建和启动线程3.1 继承Thread类创建线程3.2 实现Runnable接口创建线程 四、Thread类的核心…...
面向无人机海岸带生态系统监测的语义分割基准数据集
描述:海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而,目前该领域仍面临一个挑战,即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...
Git 3天2K星标:Datawhale 的 Happy-LLM 项目介绍(附教程)
引言 在人工智能飞速发展的今天,大语言模型(Large Language Models, LLMs)已成为技术领域的焦点。从智能写作到代码生成,LLM 的应用场景不断扩展,深刻改变了我们的工作和生活方式。然而,理解这些模型的内部…...
在鸿蒙HarmonyOS 5中使用DevEco Studio实现企业微信功能
1. 开发环境准备 安装DevEco Studio 3.1: 从华为开发者官网下载最新版DevEco Studio安装HarmonyOS 5.0 SDK 项目配置: // module.json5 {"module": {"requestPermissions": [{"name": "ohos.permis…...
C语言中提供的第三方库之哈希表实现
一. 简介 前面一篇文章简单学习了C语言中第三方库(uthash库)提供对哈希表的操作,文章如下: C语言中提供的第三方库uthash常用接口-CSDN博客 本文简单学习一下第三方库 uthash库对哈希表的操作。 二. uthash库哈希表操作示例 u…...
