当前位置: 首页 > news >正文

深度学习(4)---生成式对抗网络(GAN)

文章目录

  • 一、原理讲述
    • 1.1 概念讲解
    • 1.2 生成模型和判别模型
  • 二、训练过程
    • 2.1 训练原理
    • 2.2 损失函数
  • 三、应用


一、原理讲述

1.1 概念讲解

 1. 生成式对抗网络(Generative Adversarial Network,GAN)是一种深度学习模型,是近年来复杂分布上无监督学习最具前景的方法之一。它启发自博弈论中的二人零和博弈(two-player game),两位博弈方分别由生成模型(generative model)和判别模型(discriminative model)充当。

 2. 判别模型用于判断一个给定的图片是不是真实的图片(从数据集中获取的图片),生成模型的任务是去创造一个看起来像真的图片一样的图片。两个模型一起对抗训练,生成模型产生一张图片去欺骗判别模型,判别模型判断这张图片是真的还是假的。在这两个模型训练的过程中,两个模型的能力越来越强,最终达到稳态。

latent random variable:潜在的随机变量
generated fake samples:生成的假样本
fine tune training:微调训练
generator:生成器
discriminator:判别器

在这里插入图片描述

1.2 生成模型和判别模型

 1. 生成模型:生产模型的输入是二维高斯模型中的一个随机向量,生成模型的输出是一张伪造的假图片(fake image),同时获取数据集中的真实图片,然后将假图片和真实图片传给判别模型,由判别模型给出是真实图片还是假图片的判别结果。

在这里插入图片描述
 2. 判别模型:根据输入的图片类型是假图片或真实图片,将输入数据的lable(标签)标记为0或者1。经过判别模型后输出值为一个0到1之间的数,用于表示输入图片为真实图片的概率,1表示真实图片,0表示假图片。

在这里插入图片描述

二、训练过程

2.1 训练原理

 1. GAN的训练在同一轮梯度反转的过程中可以细分为2步:(1)先训练D。(2)再训练G。注意:不是等所有的D训练好了才开始训练G,因为D的训练也需要上一轮梯度反转中的G的输出值作为输入。

梯度反转(Gradient Reversal)是一种无监督学习方法,通过将梯度乘上一个负数来反转梯度方向,以达到欺骗判别器的效果,使得源域和目标域之间的特征分布可以互相“融合”,从而实现域自适应的目的。

 2. 当训练D的时候:上一轮G产生的图片和真实图片,直接拼接在一起作为x。然后按顺序摆放成0和1,假图对应0,真图对应1。然后就可以通过D、x输入生成一个score(从0到1之间的数),通过score和y组成的损失函数,就可以进行梯度反转了。

 3. 当训练G的时候:需要把G和D当作一个整体,这里取名叫做’D_on_G’。这个整体(简称DG系统)的输出仍然是score。输入一组随机向量z,就可以在G生成一张图,通过D对生成的这张图进行打分得到score,这就是DG系统的前向过程。score=1就是DG系统需要优化的目标,score和y=1之间的差异可以组成损失函数,然后可以采用反向传播梯度。注意,这里的D的参数是不可训练的。这样就能保证G的训练是符合D的打分标准的。

在这里插入图片描述

2.2 损失函数

 1. 判别模型 D D D 的损失函数为如下所示。其中: x x x 表示真实图像; z z z 表示输入网络中的噪声; G ( z ) G(z) G(z) 表示生成器生成的假图像; D ( x ) D(x) D(x) 表示判别模型判断真实图像是否为真的概率(由于是真实图像,我们当然希望概率越接近 1 1 1 越好); D ( G ( z ) ) D(G(z)) D(G(z)) 为判别模型 D D D 去判断生成模型 G G G 生成的假图像是否为真图像的概率(由于是生成模型生成的假图像,我们希望概率越接近 0 0 0 越好)。
 我们总是期望 D ( x ) D(x) D(x) 越大, D ( G ( z ) ) D(G(z)) D(G(z)) 越小,因此要最大化下式,用 l o g log log 函数约束它们之间的关系,通过训练不断调整网络的权值,以达到我们的期望。

在这里插入图片描述
 2. 生成模型 G G G 的损失函数为如下所示。生成模型的主要作用就是从随机信号生成一张图像,来尽可能地拟合真实图像,使得判别模型 D D D 无法判断生成图像的真伪。由 l o g log log 函数的性质可知,只有当 D ( G ( z ) ) D(G(z)) D(G(z)) 的值接近 1 1 1 的时候,下式才能有最小值。 D ( G ( z ) ) = 1 D(G(z))=1 D(G(z))=1 表示判别模型 D D D 将生成模型 G G G 生成的图像判断为真实图像,所以最小化这个函数就可以使生成模型 G G G 通过不断训练生成接近真实图像分布的图像。

在这里插入图片描述
 3. 结合上面的叙述,总的优化函数为:

在这里插入图片描述

三、应用

 GAN最常使用的地方图像生成,如超分辨率任务,语义分割等。用GAN生成的图像也可以来做数据增强。

相关文章:

深度学习(4)---生成式对抗网络(GAN)

文章目录 一、原理讲述1.1 概念讲解1.2 生成模型和判别模型 二、训练过程2.1 训练原理2.2 损失函数 三、应用 一、原理讲述 1.1 概念讲解 1. 生成式对抗网络(Generative Adversarial Network,GAN)是一种深度学习模型,是近年来复杂…...

ThinkPad电脑HDMI接口失灵如何解决?

ThinkPad电脑HDMI接口失灵如何解决? 如果平时正常使用的外接显示器,某天突然无法使用了,重新插拔依然无信号的话,可以打开系统的设备管理器(快捷键winx),首先看一下监视器的识别情况&#xff0c…...

第四部分:JavaScript

一:jQuery 1.1:jQuery介绍 什么是jQuery? jQuery是JavaScript和查询(Query),它是辅助JavaScript开发的js类库 jQuery的核心思想 核心思想是write less,do more,所以它实现了很多浏览…...

【游戏开发】【心法】游戏设计心法系列1-以玩法为核心去设计游戏

游戏的本质 游戏的魔法在于寻找隐藏事物之间的联系。 游戏的魅力在于随着玩家逐渐发现并了解游戏世界的方方面面,他会得到一种丰富而深厚的体验。 挑战,竞争和互动是游戏玩法的三大要素。 规则,过程,目标则是游戏内容的要素。 如…...

chrome谷歌浏览器取消网页所有剪切板的授权方法步骤

地址栏输入 chrome://settings/content/clipboard选择 不允许网站查看您剪贴板中的文字或图片 ———————————————— 版权声明:本文为CSDN博主「一切V随缘」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明…...

目标检测算法改进系列之嵌入Deformable ConvNets v2 (DCNv2)

Deformable ConvNets v2 简介:由于构造卷积神经网络所用的模块中几何结构是固定的,其几何变换建模的能力本质上是有限的。在DCN v1中引入了两种新的模块来提高卷积神经网络对变换的建模能力,即可变形卷积 (deformable convolution) 和可变形…...

最新发布!阿里云卓越架构框架重磅升级

云布道师 10 月 19 日阿里云峰会山东上,阿里云重磅升级《阿里云卓越架构白皮书》,助力企业在阿里云上构建更加安全、高效、稳定的云架构。《阿里云卓越架构白皮书》在今年的阿里云峰会粤港澳大湾区首度亮相,这是阿里云基于多年服务各行各业客…...

如何监听/抓取两个设备/芯片之间“UART串口”通信数据--监视TXD和RXD

案例背景:全网仅此一篇!!! 两个设备/芯片之间采用UART串口通信。我们如何实现芯片1 TXD – > 芯片2 RXD,芯片2 TXD --> 芯片1 RXD两个单线链路上的数据抓取和监听?这篇博客将告诉您。 目录 1 什么是…...

JDK项目分析的经验分享

基本类型的包装类(Character放在最后) String、StringBuffer、StringBuilder、StringJoiner、StringTokenizer(补充正则表达式的知识) CharacterIterator、StringCharacterIterator、CharsetProvider、CharsetEncoder、CharsetDecoder(较难) java.util.function下的函数表…...

Java创建一个长度为10的数组,利用Arrays.sort(), 为数组元素排序

程序要求:1)创建一个整型数组,数组的长度为10. 2)给数组元素赋值,要求乱序。 3)利用fori循环将数组元素依次输出。 4)利用Arrays.sort(), 为数组元素排序 5)采用增加for循环将排…...

python 动态加载C# 动态库的一些问题

python导入C#动态库问题 背景介绍 我使用的python是3.7,需要调用之前已经用于其他项目的C#编写的动态库(xx.dll).由于调用方法很简单,可以参考下这个调用动态库,这里主要说一下我遇到的问题。 试图加载格式不正确的程序 这个问题实际是由于目标程序和…...

代码审计-锐捷NBR路由器 EWEB网管系统 远程命令执行

那天下着很大的雨,母亲从城里走回来的时候,浑身就是一个泥人,那一刻我就知道我没有别的选择了 出现漏洞的文件在 /guest_auth/guestIsUp.php 审查源码我们发现通过命令拼接的方式构造命令执行 构造payload: /guest_auth/guestI…...

VBA技术资料MF75:测量所选单元格范围的高度和宽度

我给VBA的定义:VBA是个人小型自动化处理的有效工具。利用好了,可以大大提高自己的工作效率,而且可以提高数据的准确度。我的教程一共九套,分为初级、中级、高级三大部分。是对VBA的系统讲解,从简单的入门,到…...

力扣 26. 删除有序数组中的重复项

目录 1.解题思路2.代码实现 1.解题思路 由于数组为非严格递增排列的数组,因此可利用快慢指针,如果快指针减一不等于快指针,将快指针的值给慢指针,并将快慢指针同时加一,但如果相同,则只让快指针加一向后走…...

【uniapp】仿微信支付界面

效果图 完整代码 <template><view class="my-pay-page"><view :style=...

windows + ubuntu + vscode开发环境配置安装

一、卸载WSL/WSL2 如果安装了windows子系统的朋友&#xff0c;可以选择继续使用。或者提前卸载WSL&#xff0c;再选择安装虚拟机。虚拟机占用内存较大&#xff0c;WSL可能对于开发的一些需求还有欠缺。根据自己的实际情况进行选择。 WIN10/11安装WSL(请参考官方资料&#xff0c…...

设计模式:责任链模式(C#、JAVA、JavaScript、C++、Python、Go、PHP)

上一篇《享元模式》 下一篇《解释器模式》 简介&#xff1a; 责任链模式&#xff0c;它是一种行为型设计模式&#xff0c;它将许多对象连接起来形成一条链&#xff0c;每个对象处理不同的请求&#xff0c…...

koa搭建服务器(二)

在上一篇文章已经成功的运行了一个http服务器&#xff0c;接下来就是使用Sequelize ORM&#xff08;官方文档&#xff1a;Sequelize 简介 | Sequelize中文文档 | Sequelize中文网&#xff09;来操作数据库。 1、安装依赖 首先也是需要安装相关的依赖 npm i sequelize npm i …...

LeetCode 125 验证回文串 简单

题目 - 点击直达 1. 125 验证回文串 简单1. 题目详情1. 原题链接2. 题目要求3. 基础框架 2. 解题思路1. 思路分析2. 时间复杂度3. 代码实现 1. 125 验证回文串 简单 1. 题目详情 如果在将所有大写字符转换为小写字符、并移除所有非字母数字字符之后&#xff0c;短语正着读和反…...

Android底层摸索改BUG(一):Android系统状态栏显示不下Wifi图标

这是我入职的第一个BUG&#xff0c;头疼&#xff0c;隔壁实习生一周解决了&#xff0c;我多花了几天 其中最大的原因就是我思考复杂了&#xff0c;在公司系统上&#xff0c;此BUG标题为&#xff1a; 请确认Wifi优先级&#xff0c;状态栏Wifi被忽略 BUG意思就是&#xff1a;当…...

Python|GIF 解析与构建(5):手搓截屏和帧率控制

目录 Python&#xff5c;GIF 解析与构建&#xff08;5&#xff09;&#xff1a;手搓截屏和帧率控制 一、引言 二、技术实现&#xff1a;手搓截屏模块 2.1 核心原理 2.2 代码解析&#xff1a;ScreenshotData类 2.2.1 截图函数&#xff1a;capture_screen 三、技术实现&…...

Zustand 状态管理库:极简而强大的解决方案

Zustand 是一个轻量级、快速和可扩展的状态管理库&#xff0c;特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...

QMC5883L的驱动

简介 本篇文章的代码已经上传到了github上面&#xff0c;开源代码 作为一个电子罗盘模块&#xff0c;我们可以通过I2C从中获取偏航角yaw&#xff0c;相对于六轴陀螺仪的yaw&#xff0c;qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...

关于nvm与node.js

1 安装nvm 安装过程中手动修改 nvm的安装路径&#xff0c; 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解&#xff0c;但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后&#xff0c;通常在该文件中会出现以下配置&…...

测试markdown--肇兴

day1&#xff1a; 1、去程&#xff1a;7:04 --11:32高铁 高铁右转上售票大厅2楼&#xff0c;穿过候车厅下一楼&#xff0c;上大巴车 &#xffe5;10/人 **2、到达&#xff1a;**12点多到达寨子&#xff0c;买门票&#xff0c;美团/抖音&#xff1a;&#xffe5;78人 3、中饭&a…...

基于数字孪生的水厂可视化平台建设:架构与实践

分享大纲&#xff1a; 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年&#xff0c;数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段&#xff0c;基于数字孪生的水厂可视化平台的…...

初学 pytest 记录

安装 pip install pytest用例可以是函数也可以是类中的方法 def test_func():print()class TestAdd: # def __init__(self): 在 pytest 中不可以使用__init__方法 # self.cc 12345 pytest.mark.api def test_str(self):res add(1, 2)assert res 12def test_int(self):r…...

A2A JS SDK 完整教程:快速入门指南

目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库&#xff…...

深入浅出深度学习基础:从感知机到全连接神经网络的核心原理与应用

文章目录 前言一、感知机 (Perceptron)1.1 基础介绍1.1.1 感知机是什么&#xff1f;1.1.2 感知机的工作原理 1.2 感知机的简单应用&#xff1a;基本逻辑门1.2.1 逻辑与 (Logic AND)1.2.2 逻辑或 (Logic OR)1.2.3 逻辑与非 (Logic NAND) 1.3 感知机的实现1.3.1 简单实现 (基于阈…...

DingDing机器人群消息推送

文章目录 1 新建机器人2 API文档说明3 代码编写 1 新建机器人 点击群设置 下滑到群管理的机器人&#xff0c;点击进入 添加机器人 选择自定义Webhook服务 点击添加 设置安全设置&#xff0c;详见说明文档 成功后&#xff0c;记录Webhook 2 API文档说明 点击设置说明 查看自…...