【pandas技巧】group by+agg+transform函数
目录
1. group by+单个字段+单个聚合
2. group by+单个字段+多个聚合
3. group by+多个字段+单个聚合
4. group by+多个字段+多个聚合
5. transform函数
| students | grade | sex | score | money | |
|---|---|---|---|---|---|
| 0 | 小狗 | 小学部 | female | 95 | 844 |
| 1 | 小猫 | 小学部 | male | 93 | 836 |
| 2 | 小鸭 | 初中部 | male | 83 | 854 |
| 3 | 小兔 | 小学部 | female | 90 | 931 |
| 4 | 小花 | 小学部 | male | 81 | 853 |
| 5 | 小草 | 小学部 | male | 80 | 991 |
| 6 | 小狗 | 初中部 | female | 81 | 854 |
| 7 | 小猫 | 小学部 | male | 93 | 886 |
| 8 | 小鸭 | 小学部 | male | 88 | 983 |
| 9 | 小兔 | 小学部 | male | 86 | 891 |
| 10 | 小花 | 初中部 | male | 92 | 830 |
| 11 | 小草 | 初中部 | male | 84 | 948 |
1. group by+单个字段+单个聚合
1.1 方法一
# 求每个人的总金额:
total_money=df.groupby("students")["money"].sum().reset_index()
total_money
1.2 方法二(使用agg)
df.groupby("students").agg({"money":"sum"}).reset_index()
#或者
df.groupby("students").agg({"money":np.sum}).reset_index()
| students | money | |
|---|---|---|
| 0 | 小兔 | 1820 |
| 1 | 小狗 | 1711 |
| 2 | 小猫 | 1670 |
| 3 | 小花 | 1861 |
| 4 | 小草 | 1825 |
| 5 | 小鸭 | 1719 |
2. group by+单个字段+多个聚合
2.1 方法一(使用group by+merge)
mean_money = df.groupby("students")["money"].mean().reset_index()
mean_money.columns = ["students","mean_money"]
mean_money
total_mean = total_money.merge(mean_money)
total_mean

total_mean = total_money.merge(mean_money)
total_mean
| students | total_money | mean_money | |
|---|---|---|---|
| 0 | 小兔 | 1820 | 910.0 |
| 1 | 小狗 | 1711 | 855.5 |
| 2 | 小猫 | 1670 | 835.0 |
| 3 | 小花 | 1861 | 930.5 |
| 4 | 小草 | 1825 | 912.5 |
| 5 | 小鸭 | 1719 | 859.5 |
2.2 方法二(使用group by+agg)
total_mean = df.groupby("students").agg(total_money=("money", "sum"),mean_money=("money", "mean")).reset_index()
total_mean
| students | total_money | mean_money | |
|---|---|---|---|
| 0 | 小兔 | 1820 | 910.0 |
| 1 | 小狗 | 1711 | 855.5 |
| 2 | 小猫 | 1670 | 835.0 |
| 3 | 小花 | 1861 | 930.5 |
| 4 | 小草 | 1825 | 912.5 |
| 5 | 小鸭 | 1719 | 859.5 |
3. group by+多个字段+单个聚合
3.1 方法一
df.groupby(["students","grade"])["money"].sum().reset_index()
| students | grade | money | |
|---|---|---|---|
| 0 | 小兔 | 初中部 | 1820 |
| 1 | 小狗 | 初中部 | 843 |
| 2 | 小狗 | 小学部 | 868 |
| 3 | 小猫 | 小学部 | 1670 |
| 4 | 小花 | 初中部 | 910 |
| 5 | 小花 | 小学部 | 951 |
| 6 | 小草 | 初中部 | 1825 |
| 7 | 小鸭 | 初中部 | 1719 |
3.2 方法二(使用agg)
df.groupby(["students","grade"]).agg({"money":"sum"}).reset_index()
| students | grade | money | |
|---|---|---|---|
| 0 | 小兔 | 初中部 | 1820 |
| 1 | 小狗 | 初中部 | 843 |
| 2 | 小狗 | 小学部 | 868 |
| 3 | 小猫 | 小学部 | 1670 |
| 4 | 小花 | 初中部 | 910 |
| 5 | 小花 | 小学部 | 951 |
| 6 | 小草 | 初中部 | 1825 |
| 7 | 小鸭 | 初中部 | 1719 |
4. group by+多个字段+多个聚合
agg函数的使用的方法是:agg(新列名=("原列名", "统计函数"))
df.groupby(["students","grade"]).agg(total_money=("money", "sum"),mean_money=("money", "mean"),total_score=("score", "sum")).reset_index()
| students | grade | total_money | mean_money | total_score | |
|---|---|---|---|---|---|
| 0 | 小兔 | 初中部 | 1820 | 910.0 | 192 |
| 1 | 小狗 | 初中部 | 843 | 843.0 | 88 |
| 2 | 小狗 | 小学部 | 868 | 868.0 | 93 |
| 3 | 小猫 | 小学部 | 1670 | 835.0 | 178 |
| 4 | 小花 | 初中部 | 910 | 910.0 | 95 |
| 5 | 小花 | 小学部 | 951 | 951.0 | 98 |
| 6 | 小草 | 初中部 | 1825 | 912.5 | 184 |
| 7 | 小鸭 | 初中部 | 1719 | 859.5 | 173 |
5. transform函数
5.1 方法一(使用groupby + merge)
df_1 = df.groupby("grade")["score"].mean().reset_index()
df_1.columns = ["grade", "average_score"]
df_1
| grade | average_score | |
|---|---|---|
| 0 | 初中部 | 85.00 |
| 1 | 小学部 | 88.25 |
df_new1 = pd.merge(df, df_1, on="grade")
df_new1
| students | grade | sex | score | money | average_score | |
|---|---|---|---|---|---|---|
| 0 | 小狗 | 小学部 | female | 95 | 844 | 88.25 |
| 1 | 小猫 | 小学部 | male | 93 | 836 | 88.25 |
| 2 | 小兔 | 小学部 | female | 90 | 931 | 88.25 |
| 3 | 小花 | 小学部 | male | 81 | 853 | 88.25 |
| 4 | 小草 | 小学部 | male | 80 | 991 | 88.25 |
| 5 | 小猫 | 小学部 | male | 93 | 886 | 88.25 |
| 6 | 小鸭 | 小学部 | male | 88 | 983 | 88.25 |
| 7 | 小兔 | 小学部 | male | 86 | 891 | 88.25 |
| 8 | 小鸭 | 初中部 | male | 83 | 854 | 85.00 |
| 9 | 小狗 | 初中部 | female | 81 | 854 | 85.00 |
| 10 | 小花 | 初中部 | male | 92 | 830 | 85.00 |
| 11 | 小草 | 初中部 | male | 84 | 948 | 85.00 |
5.2 方法二(使用groupby + map)
dic = df.groupby("grade")["score"].mean().to_dict()
dic
{'初中部': 85.0, '小学部': 88.25}
df_new1["average_map_score"] = df["grade"].map(dic)
df_new1
| students | grade | sex | score | money | average_score | average_map_score | |
|---|---|---|---|---|---|---|---|
| 0 | 小狗 | 小学部 | female | 95 | 844 | 88.25 | 88.25 |
| 1 | 小猫 | 小学部 | male | 93 | 836 | 88.25 | 88.25 |
| 2 | 小兔 | 小学部 | female | 90 | 931 | 88.25 | 85.00 |
| 3 | 小花 | 小学部 | male | 81 | 853 | 88.25 | 88.25 |
| 4 | 小草 | 小学部 | male | 80 | 991 | 88.25 | 88.25 |
| 5 | 小猫 | 小学部 | male | 93 | 886 | 88.25 | 88.25 |
| 6 | 小鸭 | 小学部 | male | 88 | 983 | 88.25 | 85.00 |
| 7 | 小兔 | 小学部 | male | 86 | 891 | 88.25 | 88.25 |
| 8 | 小鸭 | 初中部 | male | 83 | 854 | 85.00 | 88.25 |
| 9 | 小狗 | 初中部 | female | 81 | 854 | 85.00 | 88.25 |
| 10 | 小花 | 初中部 | male | 92 | 830 | 85.00 | 85.00 |
| 11 | 小草 | 初中部 | male | 84 | 948 | 85.00 | 85.00 |
5.3 方法三(使用transform一步到位)
df_new1["average_trans_score"] = df.groupby("grade")["score"].transform("mean")
df_new1
| students | grade | sex | score | money | average_score | average_map_score | average_trans_score | |
|---|---|---|---|---|---|---|---|---|
| 0 | 小狗 | 小学部 | female | 95 | 844 | 88.25 | 88.25 | 88.25 |
| 1 | 小猫 | 小学部 | male | 93 | 836 | 88.25 | 88.25 | 88.25 |
| 2 | 小兔 | 小学部 | female | 90 | 931 | 88.25 | 85.00 | 85.00 |
| 3 | 小花 | 小学部 | male | 81 | 853 | 88.25 | 88.25 | 88.25 |
| 4 | 小草 | 小学部 | male | 80 | 991 | 88.25 | 88.25 | 88.25 |
| 5 | 小猫 | 小学部 | male | 93 | 886 | 88.25 | 88.25 | 88.25 |
| 6 | 小鸭 | 小学部 | male | 88 | 983 | 88.25 | 85.00 | 85.00 |
| 7 | 小兔 | 小学部 | male | 86 | 891 | 88.25 | 88.25 | 88.25 |
| 8 | 小鸭 | 初中部 | male | 83 | 854 | 85.00 | 88.25 | 88.25 |
| 9 | 小狗 | 初中部 | female | 81 | 854 | 85.00 | 88.25 | 88.25 |
| 10 | 小花 | 初中部 | male | 92 | 830 | 85.00 | 85.00 | 85.00 |
| 11 | 小草 | 初中部 | male | 84 | 948 | 85.00 | 85.00 | 85.00 |
相关文章:
【pandas技巧】group by+agg+transform函数
目录 1. group by单个字段单个聚合 2. group by单个字段多个聚合 3. group by多个字段单个聚合 4. group by多个字段多个聚合 5. transform函数 studentsgradesexscoremoney0小狗小学部female958441小猫小学部male938362小鸭初中部male838543小兔小学部female909314小花小…...
一文解读WordPress网站的各类缓存-老白博客
缓存是一种重要的WordPress优化手段,用于提高网站的性能和加载速度。减少计算量,有效提升响应速度,让有限的资源服务更多的用户。本文老白博客便从自己的使用简单给大家介绍下WordPress的缓存,包括 站点缓存(Page Cach…...
从零开始:开发直播商城APP的技术指南
时下,直播商城APP已经成了线上购物、电子商务的核心组成,本文将为您提供一个全面的技术指南,帮助您从零开始开发一个直播商城APP。我们将涵盖所有关键方面,包括技术堆栈、功能模块、用户体验和安全性。 第一部分:技术…...
GZ035 5G组网与运维赛题第6套
2023年全国职业院校技能大赛 GZ035 5G组网与运维赛项(高职组) 赛题第6套 一、竞赛须知 1.竞赛内容分布 竞赛模块1--5G公共网络规划部署与开通(35分) 子任务1:5G公共网络部署与调试(15分) …...
分类预测 | Matlab实现KOA-CNN-GRU-selfAttention多特征分类预测(自注意力机制)
分类预测 | Matlab实现KOA-CNN-GRU-selfAttention多特征分类预测(自注意力机制) 目录 分类预测 | Matlab实现KOA-CNN-GRU-selfAttention多特征分类预测(自注意力机制)分类效果基本描述程序设计参考资料 分类效果 基本描述 1.Matla…...
【Qt】QString怎么转成int
2023年10月29日,周日晚上 第一种方法 这种方法会尝试将 QString 对象转换为 int 类型。如果转换成功,将返回转换后的 int 值;如果转换失败(例如,字符串中包含非数字字符),则返回 0。 QString…...
ubuntu 22.04 安装python-pcl
ubuntu 22.04 安装python-pcl 安装python-pcl修复bug 由于python-pcl库基本已经停止维护,所以Ubuntu22.04 在使用pip install python-pcl安装的时候会出现版本不适配的原因 安装python-pcl 使用Ubuntu22系统自带python3安装python-pcl,随后将下载的包拷…...
【题解】[GenshinOI Round 3 ]P9817 lmxcslD
题目传送门 分析 看到这道题我一开始是有点懵的,但是看了看数据范围,发现有几个点有 n 为质数 的特殊性质,结论先行,大胆猜测是不是可以贪心,所以先打了一个最傻的代码上去试试. void solve(){cin >> n >&…...
在pycharm中,远程操作服务器上的jupyter notebook
一、使用场景 现在我们有两台电脑,一台是拥有高算力的服务器,另一台是普通的轻薄笔记本电脑。如何在服务器上运行jupyter notebook,同时映射到笔记本电脑上的pycharm客户端中进行操作呢? 二、软件 pycharm专业版,jupy…...
SQL 运算符
SQL 运算符 运算符是保留字或主要用于 SQL 语句的 WHERE 子句中的字符,用于执行操作,例如:比较和算术运算。 这些运算符用于指定 SQL 语句中的条件,并用作语句中多个条件的连词。 常见运算符有以下几种: 算术运算符比…...
中间件安全-CVE 复现K8sDockerJettyWebsphere漏洞复现
目录 服务攻防-中间件安全&CVE 复现&K8s&Docker&Jetty&Websphere中间件-K8s中间件-Jetty漏洞复现CVE-2021-28164-路径信息泄露漏洞CVE-2021-28169双重解码信息泄露漏洞CVE-2021-34429路径信息泄露漏洞 中间件-Docker漏洞复现守护程序 API 未经授权访问漏洞…...
系列九、什么是Spring bean
一、什么是Spring bean 一句话,被Spring容器管理的bean就是Spring bean。...
轻量封装WebGPU渲染系统示例<4>-CubeMap/天空盒(源码)
当前示例源码github地址: https://github.com/vilyLei/voxwebgpu/blob/version-1.01/src/voxgpu/sample/ImgCubeMap.ts 此示例渲染系统实现的特性: 1. 用户态与系统态隔离。 2. 高频调用与低频调用隔离。 3. 面向用户的易用性封装。 4. 渲染数据和渲染机制分离。 5. 用户…...
Linux 环境变量 二
目录 获取环境变量的后两种方法 环境变量具有全局属性 内建命令 和环境变量相关的命令 c语言访问地址 重新理解地址 地址空间 获取环境变量的后两种方法 main函数的第三个参数 :char* env[ ] 也是一个指针数组,我们可以把它的内容打印出来看看。 …...
Beyond Compare4 30天试用到期的解决办法
相信很多小伙伴都有在使用Beyond Compare 4软件,如果我们没有激活该软件,就只有30天的评估使用期,那么过了这30天后我们怎么继续使用呢?下面小编就来为大家介绍方法。 打开Beyond Compare4,提示已经超出30天试用期限制…...
sentinel规则持久化-规则同步nacos-最标准配置
官方参考文档: 动态规则扩展 alibaba/Sentinel Wiki GitHub 需要修改的代码如下: 为了便于后续版本集成nacos,简单讲一下集成思路 1.更改pom 修改sentinel-datasource-nacos的范围 将 <dependency><groupId>com.alibaba.c…...
【Linux】tail命令使用
tail 命令可用于查看文件的内容,有一个常用的参数 -f 常用于查阅正在改变的日志文件。 语法 tail [参数] [文件] tail命令 -Linux手册页 著者 由保罗鲁宾、大卫麦肯齐、伊恩兰斯泰勒和吉姆梅耶林撰写。 命令选项及作用 执行令 tail --help 执行命令结果 参…...
【数据结构】面试OJ题——时间复杂度2
目录 一:移除元素 思路: 二:删除有序数组中的重复项 思路: 三:合并两个有序数组 思路1: 什么?你不知道qsort() 思路2: 一:移除元素 27. 移…...
LibreOffice编辑excel文档如何在单元格中输入手动换行符
用WPS编辑excel文档的时候,要在单元格中输入手动换行符,可以先按住Alt键,然后回车。 而用LibreOffice编辑excel文档,要在单元格中输入手动换行符,可以先按住Ctrl键,然后回车。例如:...
ideaSSM在线商务管理系统VS开发mysql数据库web结构java编程计算机网页源码maven项目
一、源码特点 SSM 在线商务管理系统是一套完善的信息管理系统,结合SSM框架和bootstrap完成本系统,对理解JSP java编程开发语言有帮助系统采用SSM框架(MVC模式开发),系统具有完整的源代码 和数据库,系统主…...
ubuntu搭建nfs服务centos挂载访问
在Ubuntu上设置NFS服务器 在Ubuntu上,你可以使用apt包管理器来安装NFS服务器。打开终端并运行: sudo apt update sudo apt install nfs-kernel-server创建共享目录 创建一个目录用于共享,例如/shared: sudo mkdir /shared sud…...
SCAU期末笔记 - 数据分析与数据挖掘题库解析
这门怎么题库答案不全啊日 来简单学一下子来 一、选择题(可多选) 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘:专注于发现数据中…...
AtCoder 第409场初级竞赛 A~E题解
A Conflict 【题目链接】 原题链接:A - Conflict 【考点】 枚举 【题目大意】 找到是否有两人都想要的物品。 【解析】 遍历两端字符串,只有在同时为 o 时输出 Yes 并结束程序,否则输出 No。 【难度】 GESP三级 【代码参考】 #i…...
Rust 异步编程
Rust 异步编程 引言 Rust 是一种系统编程语言,以其高性能、安全性以及零成本抽象而著称。在多核处理器成为主流的今天,异步编程成为了一种提高应用性能、优化资源利用的有效手段。本文将深入探讨 Rust 异步编程的核心概念、常用库以及最佳实践。 异步编程基础 什么是异步…...
Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信
文章目录 Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket(服务端和客户端都要)2. 绑定本地地址和端口&#x…...
在Ubuntu24上采用Wine打开SourceInsight
1. 安装wine sudo apt install wine 2. 安装32位库支持,SourceInsight是32位程序 sudo dpkg --add-architecture i386 sudo apt update sudo apt install wine32:i386 3. 验证安装 wine --version 4. 安装必要的字体和库(解决显示问题) sudo apt install fonts-wqy…...
比较数据迁移后MySQL数据库和OceanBase数据仓库中的表
设计一个MySQL数据库和OceanBase数据仓库的表数据比较的详细程序流程,两张表是相同的结构,都有整型主键id字段,需要每次从数据库分批取得2000条数据,用于比较,比较操作的同时可以再取2000条数据,等上一次比较完成之后,开始比较,直到比较完所有的数据。比较操作需要比较…...
Tauri2学习笔记
教程地址:https://www.bilibili.com/video/BV1Ca411N7mF?spm_id_from333.788.player.switch&vd_source707ec8983cc32e6e065d5496a7f79ee6 官方指引:https://tauri.app/zh-cn/start/ 目前Tauri2的教程视频不多,我按照Tauri1的教程来学习&…...
Android屏幕刷新率与FPS(Frames Per Second) 120hz
Android屏幕刷新率与FPS(Frames Per Second) 120hz 屏幕刷新率是屏幕每秒钟刷新显示内容的次数,单位是赫兹(Hz)。 60Hz 屏幕:每秒刷新 60 次,每次刷新间隔约 16.67ms 90Hz 屏幕:每秒刷新 90 次,…...
【题解-洛谷】P10480 可达性统计
题目:P10480 可达性统计 题目描述 给定一张 N N N 个点 M M M 条边的有向无环图,分别统计从每个点出发能够到达的点的数量。 输入格式 第一行两个整数 N , M N,M N,M,接下来 M M M 行每行两个整数 x , y x,y x,y,表示从 …...
