【pandas技巧】group by+agg+transform函数
目录
1. group by+单个字段+单个聚合
2. group by+单个字段+多个聚合
3. group by+多个字段+单个聚合
4. group by+多个字段+多个聚合
5. transform函数
| students | grade | sex | score | money | |
|---|---|---|---|---|---|
| 0 | 小狗 | 小学部 | female | 95 | 844 |
| 1 | 小猫 | 小学部 | male | 93 | 836 |
| 2 | 小鸭 | 初中部 | male | 83 | 854 |
| 3 | 小兔 | 小学部 | female | 90 | 931 |
| 4 | 小花 | 小学部 | male | 81 | 853 |
| 5 | 小草 | 小学部 | male | 80 | 991 |
| 6 | 小狗 | 初中部 | female | 81 | 854 |
| 7 | 小猫 | 小学部 | male | 93 | 886 |
| 8 | 小鸭 | 小学部 | male | 88 | 983 |
| 9 | 小兔 | 小学部 | male | 86 | 891 |
| 10 | 小花 | 初中部 | male | 92 | 830 |
| 11 | 小草 | 初中部 | male | 84 | 948 |
1. group by+单个字段+单个聚合
1.1 方法一
# 求每个人的总金额:
total_money=df.groupby("students")["money"].sum().reset_index()
total_money
1.2 方法二(使用agg)
df.groupby("students").agg({"money":"sum"}).reset_index()
#或者
df.groupby("students").agg({"money":np.sum}).reset_index()
| students | money | |
|---|---|---|
| 0 | 小兔 | 1820 |
| 1 | 小狗 | 1711 |
| 2 | 小猫 | 1670 |
| 3 | 小花 | 1861 |
| 4 | 小草 | 1825 |
| 5 | 小鸭 | 1719 |
2. group by+单个字段+多个聚合
2.1 方法一(使用group by+merge)
mean_money = df.groupby("students")["money"].mean().reset_index()
mean_money.columns = ["students","mean_money"]
mean_money
total_mean = total_money.merge(mean_money)
total_mean

total_mean = total_money.merge(mean_money)
total_mean
| students | total_money | mean_money | |
|---|---|---|---|
| 0 | 小兔 | 1820 | 910.0 |
| 1 | 小狗 | 1711 | 855.5 |
| 2 | 小猫 | 1670 | 835.0 |
| 3 | 小花 | 1861 | 930.5 |
| 4 | 小草 | 1825 | 912.5 |
| 5 | 小鸭 | 1719 | 859.5 |
2.2 方法二(使用group by+agg)
total_mean = df.groupby("students").agg(total_money=("money", "sum"),mean_money=("money", "mean")).reset_index()
total_mean
| students | total_money | mean_money | |
|---|---|---|---|
| 0 | 小兔 | 1820 | 910.0 |
| 1 | 小狗 | 1711 | 855.5 |
| 2 | 小猫 | 1670 | 835.0 |
| 3 | 小花 | 1861 | 930.5 |
| 4 | 小草 | 1825 | 912.5 |
| 5 | 小鸭 | 1719 | 859.5 |
3. group by+多个字段+单个聚合
3.1 方法一
df.groupby(["students","grade"])["money"].sum().reset_index()
| students | grade | money | |
|---|---|---|---|
| 0 | 小兔 | 初中部 | 1820 |
| 1 | 小狗 | 初中部 | 843 |
| 2 | 小狗 | 小学部 | 868 |
| 3 | 小猫 | 小学部 | 1670 |
| 4 | 小花 | 初中部 | 910 |
| 5 | 小花 | 小学部 | 951 |
| 6 | 小草 | 初中部 | 1825 |
| 7 | 小鸭 | 初中部 | 1719 |
3.2 方法二(使用agg)
df.groupby(["students","grade"]).agg({"money":"sum"}).reset_index()
| students | grade | money | |
|---|---|---|---|
| 0 | 小兔 | 初中部 | 1820 |
| 1 | 小狗 | 初中部 | 843 |
| 2 | 小狗 | 小学部 | 868 |
| 3 | 小猫 | 小学部 | 1670 |
| 4 | 小花 | 初中部 | 910 |
| 5 | 小花 | 小学部 | 951 |
| 6 | 小草 | 初中部 | 1825 |
| 7 | 小鸭 | 初中部 | 1719 |
4. group by+多个字段+多个聚合
agg函数的使用的方法是:agg(新列名=("原列名", "统计函数"))
df.groupby(["students","grade"]).agg(total_money=("money", "sum"),mean_money=("money", "mean"),total_score=("score", "sum")).reset_index()
| students | grade | total_money | mean_money | total_score | |
|---|---|---|---|---|---|
| 0 | 小兔 | 初中部 | 1820 | 910.0 | 192 |
| 1 | 小狗 | 初中部 | 843 | 843.0 | 88 |
| 2 | 小狗 | 小学部 | 868 | 868.0 | 93 |
| 3 | 小猫 | 小学部 | 1670 | 835.0 | 178 |
| 4 | 小花 | 初中部 | 910 | 910.0 | 95 |
| 5 | 小花 | 小学部 | 951 | 951.0 | 98 |
| 6 | 小草 | 初中部 | 1825 | 912.5 | 184 |
| 7 | 小鸭 | 初中部 | 1719 | 859.5 | 173 |
5. transform函数
5.1 方法一(使用groupby + merge)
df_1 = df.groupby("grade")["score"].mean().reset_index()
df_1.columns = ["grade", "average_score"]
df_1
| grade | average_score | |
|---|---|---|
| 0 | 初中部 | 85.00 |
| 1 | 小学部 | 88.25 |
df_new1 = pd.merge(df, df_1, on="grade")
df_new1
| students | grade | sex | score | money | average_score | |
|---|---|---|---|---|---|---|
| 0 | 小狗 | 小学部 | female | 95 | 844 | 88.25 |
| 1 | 小猫 | 小学部 | male | 93 | 836 | 88.25 |
| 2 | 小兔 | 小学部 | female | 90 | 931 | 88.25 |
| 3 | 小花 | 小学部 | male | 81 | 853 | 88.25 |
| 4 | 小草 | 小学部 | male | 80 | 991 | 88.25 |
| 5 | 小猫 | 小学部 | male | 93 | 886 | 88.25 |
| 6 | 小鸭 | 小学部 | male | 88 | 983 | 88.25 |
| 7 | 小兔 | 小学部 | male | 86 | 891 | 88.25 |
| 8 | 小鸭 | 初中部 | male | 83 | 854 | 85.00 |
| 9 | 小狗 | 初中部 | female | 81 | 854 | 85.00 |
| 10 | 小花 | 初中部 | male | 92 | 830 | 85.00 |
| 11 | 小草 | 初中部 | male | 84 | 948 | 85.00 |
5.2 方法二(使用groupby + map)
dic = df.groupby("grade")["score"].mean().to_dict()
dic
{'初中部': 85.0, '小学部': 88.25}
df_new1["average_map_score"] = df["grade"].map(dic)
df_new1
| students | grade | sex | score | money | average_score | average_map_score | |
|---|---|---|---|---|---|---|---|
| 0 | 小狗 | 小学部 | female | 95 | 844 | 88.25 | 88.25 |
| 1 | 小猫 | 小学部 | male | 93 | 836 | 88.25 | 88.25 |
| 2 | 小兔 | 小学部 | female | 90 | 931 | 88.25 | 85.00 |
| 3 | 小花 | 小学部 | male | 81 | 853 | 88.25 | 88.25 |
| 4 | 小草 | 小学部 | male | 80 | 991 | 88.25 | 88.25 |
| 5 | 小猫 | 小学部 | male | 93 | 886 | 88.25 | 88.25 |
| 6 | 小鸭 | 小学部 | male | 88 | 983 | 88.25 | 85.00 |
| 7 | 小兔 | 小学部 | male | 86 | 891 | 88.25 | 88.25 |
| 8 | 小鸭 | 初中部 | male | 83 | 854 | 85.00 | 88.25 |
| 9 | 小狗 | 初中部 | female | 81 | 854 | 85.00 | 88.25 |
| 10 | 小花 | 初中部 | male | 92 | 830 | 85.00 | 85.00 |
| 11 | 小草 | 初中部 | male | 84 | 948 | 85.00 | 85.00 |
5.3 方法三(使用transform一步到位)
df_new1["average_trans_score"] = df.groupby("grade")["score"].transform("mean")
df_new1
| students | grade | sex | score | money | average_score | average_map_score | average_trans_score | |
|---|---|---|---|---|---|---|---|---|
| 0 | 小狗 | 小学部 | female | 95 | 844 | 88.25 | 88.25 | 88.25 |
| 1 | 小猫 | 小学部 | male | 93 | 836 | 88.25 | 88.25 | 88.25 |
| 2 | 小兔 | 小学部 | female | 90 | 931 | 88.25 | 85.00 | 85.00 |
| 3 | 小花 | 小学部 | male | 81 | 853 | 88.25 | 88.25 | 88.25 |
| 4 | 小草 | 小学部 | male | 80 | 991 | 88.25 | 88.25 | 88.25 |
| 5 | 小猫 | 小学部 | male | 93 | 886 | 88.25 | 88.25 | 88.25 |
| 6 | 小鸭 | 小学部 | male | 88 | 983 | 88.25 | 85.00 | 85.00 |
| 7 | 小兔 | 小学部 | male | 86 | 891 | 88.25 | 88.25 | 88.25 |
| 8 | 小鸭 | 初中部 | male | 83 | 854 | 85.00 | 88.25 | 88.25 |
| 9 | 小狗 | 初中部 | female | 81 | 854 | 85.00 | 88.25 | 88.25 |
| 10 | 小花 | 初中部 | male | 92 | 830 | 85.00 | 85.00 | 85.00 |
| 11 | 小草 | 初中部 | male | 84 | 948 | 85.00 | 85.00 | 85.00 |
相关文章:
【pandas技巧】group by+agg+transform函数
目录 1. group by单个字段单个聚合 2. group by单个字段多个聚合 3. group by多个字段单个聚合 4. group by多个字段多个聚合 5. transform函数 studentsgradesexscoremoney0小狗小学部female958441小猫小学部male938362小鸭初中部male838543小兔小学部female909314小花小…...
一文解读WordPress网站的各类缓存-老白博客
缓存是一种重要的WordPress优化手段,用于提高网站的性能和加载速度。减少计算量,有效提升响应速度,让有限的资源服务更多的用户。本文老白博客便从自己的使用简单给大家介绍下WordPress的缓存,包括 站点缓存(Page Cach…...
从零开始:开发直播商城APP的技术指南
时下,直播商城APP已经成了线上购物、电子商务的核心组成,本文将为您提供一个全面的技术指南,帮助您从零开始开发一个直播商城APP。我们将涵盖所有关键方面,包括技术堆栈、功能模块、用户体验和安全性。 第一部分:技术…...
GZ035 5G组网与运维赛题第6套
2023年全国职业院校技能大赛 GZ035 5G组网与运维赛项(高职组) 赛题第6套 一、竞赛须知 1.竞赛内容分布 竞赛模块1--5G公共网络规划部署与开通(35分) 子任务1:5G公共网络部署与调试(15分) …...
分类预测 | Matlab实现KOA-CNN-GRU-selfAttention多特征分类预测(自注意力机制)
分类预测 | Matlab实现KOA-CNN-GRU-selfAttention多特征分类预测(自注意力机制) 目录 分类预测 | Matlab实现KOA-CNN-GRU-selfAttention多特征分类预测(自注意力机制)分类效果基本描述程序设计参考资料 分类效果 基本描述 1.Matla…...
【Qt】QString怎么转成int
2023年10月29日,周日晚上 第一种方法 这种方法会尝试将 QString 对象转换为 int 类型。如果转换成功,将返回转换后的 int 值;如果转换失败(例如,字符串中包含非数字字符),则返回 0。 QString…...
ubuntu 22.04 安装python-pcl
ubuntu 22.04 安装python-pcl 安装python-pcl修复bug 由于python-pcl库基本已经停止维护,所以Ubuntu22.04 在使用pip install python-pcl安装的时候会出现版本不适配的原因 安装python-pcl 使用Ubuntu22系统自带python3安装python-pcl,随后将下载的包拷…...
【题解】[GenshinOI Round 3 ]P9817 lmxcslD
题目传送门 分析 看到这道题我一开始是有点懵的,但是看了看数据范围,发现有几个点有 n 为质数 的特殊性质,结论先行,大胆猜测是不是可以贪心,所以先打了一个最傻的代码上去试试. void solve(){cin >> n >&…...
在pycharm中,远程操作服务器上的jupyter notebook
一、使用场景 现在我们有两台电脑,一台是拥有高算力的服务器,另一台是普通的轻薄笔记本电脑。如何在服务器上运行jupyter notebook,同时映射到笔记本电脑上的pycharm客户端中进行操作呢? 二、软件 pycharm专业版,jupy…...
SQL 运算符
SQL 运算符 运算符是保留字或主要用于 SQL 语句的 WHERE 子句中的字符,用于执行操作,例如:比较和算术运算。 这些运算符用于指定 SQL 语句中的条件,并用作语句中多个条件的连词。 常见运算符有以下几种: 算术运算符比…...
中间件安全-CVE 复现K8sDockerJettyWebsphere漏洞复现
目录 服务攻防-中间件安全&CVE 复现&K8s&Docker&Jetty&Websphere中间件-K8s中间件-Jetty漏洞复现CVE-2021-28164-路径信息泄露漏洞CVE-2021-28169双重解码信息泄露漏洞CVE-2021-34429路径信息泄露漏洞 中间件-Docker漏洞复现守护程序 API 未经授权访问漏洞…...
系列九、什么是Spring bean
一、什么是Spring bean 一句话,被Spring容器管理的bean就是Spring bean。...
轻量封装WebGPU渲染系统示例<4>-CubeMap/天空盒(源码)
当前示例源码github地址: https://github.com/vilyLei/voxwebgpu/blob/version-1.01/src/voxgpu/sample/ImgCubeMap.ts 此示例渲染系统实现的特性: 1. 用户态与系统态隔离。 2. 高频调用与低频调用隔离。 3. 面向用户的易用性封装。 4. 渲染数据和渲染机制分离。 5. 用户…...
Linux 环境变量 二
目录 获取环境变量的后两种方法 环境变量具有全局属性 内建命令 和环境变量相关的命令 c语言访问地址 重新理解地址 地址空间 获取环境变量的后两种方法 main函数的第三个参数 :char* env[ ] 也是一个指针数组,我们可以把它的内容打印出来看看。 …...
Beyond Compare4 30天试用到期的解决办法
相信很多小伙伴都有在使用Beyond Compare 4软件,如果我们没有激活该软件,就只有30天的评估使用期,那么过了这30天后我们怎么继续使用呢?下面小编就来为大家介绍方法。 打开Beyond Compare4,提示已经超出30天试用期限制…...
sentinel规则持久化-规则同步nacos-最标准配置
官方参考文档: 动态规则扩展 alibaba/Sentinel Wiki GitHub 需要修改的代码如下: 为了便于后续版本集成nacos,简单讲一下集成思路 1.更改pom 修改sentinel-datasource-nacos的范围 将 <dependency><groupId>com.alibaba.c…...
【Linux】tail命令使用
tail 命令可用于查看文件的内容,有一个常用的参数 -f 常用于查阅正在改变的日志文件。 语法 tail [参数] [文件] tail命令 -Linux手册页 著者 由保罗鲁宾、大卫麦肯齐、伊恩兰斯泰勒和吉姆梅耶林撰写。 命令选项及作用 执行令 tail --help 执行命令结果 参…...
【数据结构】面试OJ题——时间复杂度2
目录 一:移除元素 思路: 二:删除有序数组中的重复项 思路: 三:合并两个有序数组 思路1: 什么?你不知道qsort() 思路2: 一:移除元素 27. 移…...
LibreOffice编辑excel文档如何在单元格中输入手动换行符
用WPS编辑excel文档的时候,要在单元格中输入手动换行符,可以先按住Alt键,然后回车。 而用LibreOffice编辑excel文档,要在单元格中输入手动换行符,可以先按住Ctrl键,然后回车。例如:...
ideaSSM在线商务管理系统VS开发mysql数据库web结构java编程计算机网页源码maven项目
一、源码特点 SSM 在线商务管理系统是一套完善的信息管理系统,结合SSM框架和bootstrap完成本系统,对理解JSP java编程开发语言有帮助系统采用SSM框架(MVC模式开发),系统具有完整的源代码 和数据库,系统主…...
Admin.Net中的消息通信SignalR解释
定义集线器接口 IOnlineUserHub public interface IOnlineUserHub {/// 在线用户列表Task OnlineUserList(OnlineUserList context);/// 强制下线Task ForceOffline(object context);/// 发布站内消息Task PublicNotice(SysNotice context);/// 接收消息Task ReceiveMessage(…...
安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件
在选煤厂、化工厂、钢铁厂等过程生产型企业,其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进,需提前预防假检、错检、漏检,推动智慧生产运维系统数据的流动和现场赋能应用。同时,…...
YSYX学习记录(八)
C语言,练习0: 先创建一个文件夹,我用的是物理机: 安装build-essential 练习1: 我注释掉了 #include <stdio.h> 出现下面错误 在你的文本编辑器中打开ex1文件,随机修改或删除一部分,之后…...
Objective-C常用命名规范总结
【OC】常用命名规范总结 文章目录 【OC】常用命名规范总结1.类名(Class Name)2.协议名(Protocol Name)3.方法名(Method Name)4.属性名(Property Name)5.局部变量/实例变量(Local / Instance Variables&…...
高频面试之3Zookeeper
高频面试之3Zookeeper 文章目录 高频面试之3Zookeeper3.1 常用命令3.2 选举机制3.3 Zookeeper符合法则中哪两个?3.4 Zookeeper脑裂3.5 Zookeeper用来干嘛了 3.1 常用命令 ls、get、create、delete、deleteall3.2 选举机制 半数机制(过半机制࿰…...
Golang dig框架与GraphQL的完美结合
将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用,可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器,能够帮助开发者更好地管理复杂的依赖关系,而 GraphQL 则是一种用于 API 的查询语言,能够提…...
将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?
Otsu 是一种自动阈值化方法,用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理,能够自动确定一个阈值,将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...
SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现
摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序,以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务,提供稳定高效的数据处理与业务逻辑支持;利用 uniapp 实现跨平台前…...
vue3 定时器-定义全局方法 vue+ts
1.创建ts文件 路径:src/utils/timer.ts 完整代码: import { onUnmounted } from vuetype TimerCallback (...args: any[]) > voidexport function useGlobalTimer() {const timers: Map<number, NodeJS.Timeout> new Map()// 创建定时器con…...
【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)
骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术,它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton):由层级结构的骨头组成,类似于人体骨骼蒙皮 (Mesh Skinning):将模型网格顶点绑定到骨骼上,使骨骼移动…...
