当前位置: 首页 > news >正文

【pandas技巧】group by+agg+transform函数

目录

1. group by+单个字段+单个聚合

2. group by+单个字段+多个聚合

3. group by+多个字段+单个聚合

4. group by+多个字段+多个聚合

5. transform函数


studentsgradesexscoremoney
0小狗小学部female95844
1小猫小学部male93836
2小鸭初中部male83854
3小兔小学部female90931
4小花小学部male81853
5小草小学部male80991
6小狗初中部female81854
7小猫小学部male93886
8小鸭小学部male88983
9小兔小学部male86891
10小花初中部male92830
11小草初中部male84948

1. group by+单个字段+单个聚合

1.1 方法一

# 求每个人的总金额:
total_money=df.groupby("students")["money"].sum().reset_index()
total_money

1.2 方法二(使用agg)

df.groupby("students").agg({"money":"sum"}).reset_index()
#或者
df.groupby("students").agg({"money":np.sum}).reset_index()
studentsmoney
0小兔1820
1小狗1711
2小猫1670
3小花1861
4小草1825
5小鸭1719

2. group by+单个字段+多个聚合

2.1 方法一(使用group by+merge)

mean_money = df.groupby("students")["money"].mean().reset_index()
mean_money.columns = ["students","mean_money"]
mean_money
total_mean = total_money.merge(mean_money)
total_mean

total_mean = total_money.merge(mean_money)
total_mean
studentstotal_moneymean_money
0小兔1820910.0
1小狗1711855.5
2小猫1670835.0
3小花1861930.5
4小草1825912.5
5小鸭1719859.5

2.2 方法二(使用group by+agg)

total_mean = df.groupby("students").agg(total_money=("money", "sum"),mean_money=("money", "mean")).reset_index()
total_mean
studentstotal_moneymean_money
0小兔1820910.0
1小狗1711855.5
2小猫1670835.0
3小花1861930.5
4小草1825912.5
5小鸭1719859.5

3. group by+多个字段+单个聚合

3.1 方法一

df.groupby(["students","grade"])["money"].sum().reset_index()
studentsgrademoney
0小兔初中部1820
1小狗初中部843
2小狗小学部868
3小猫小学部1670
4小花初中部910
5小花小学部951
6小草初中部1825
7小鸭初中部1719

3.2 方法二(使用agg)

df.groupby(["students","grade"]).agg({"money":"sum"}).reset_index()
studentsgrademoney
0小兔初中部1820
1小狗初中部843
2小狗小学部868
3小猫小学部1670
4小花初中部910
5小花小学部951
6小草初中部1825
7小鸭初中部1719

4. group by+多个字段+多个聚合

agg函数的使用的方法是:agg(新列名=("原列名", "统计函数"))

df.groupby(["students","grade"]).agg(total_money=("money", "sum"),mean_money=("money", "mean"),total_score=("score", "sum")).reset_index()
studentsgradetotal_moneymean_moneytotal_score
0小兔初中部1820910.0192
1小狗初中部843843.088
2小狗小学部868868.093
3小猫小学部1670835.0178
4小花初中部910910.095
5小花小学部951951.098
6小草初中部1825912.5184
7小鸭初中部1719859.5173

5. transform函数

 5.1 方法一(使用groupby + merge)

df_1 = df.groupby("grade")["score"].mean().reset_index()
df_1.columns = ["grade", "average_score"]
df_1
gradeaverage_score
0初中部85.00
1小学部88.25
df_new1 = pd.merge(df, df_1, on="grade")
df_new1
studentsgradesexscoremoneyaverage_score
0小狗小学部female9584488.25
1小猫小学部male9383688.25
2小兔小学部female9093188.25
3小花小学部male8185388.25
4小草小学部male8099188.25
5小猫小学部male9388688.25
6小鸭小学部male8898388.25
7小兔小学部male8689188.25
8小鸭初中部male8385485.00
9小狗初中部female8185485.00
10小花初中部male9283085.00
11小草初中部male8494885.00

5.2 方法二(使用groupby + map)

dic = df.groupby("grade")["score"].mean().to_dict()
dic
{'初中部': 85.0, '小学部': 88.25}
df_new1["average_map_score"] = df["grade"].map(dic)
df_new1
studentsgradesexscoremoneyaverage_scoreaverage_map_score
0小狗小学部female9584488.2588.25
1小猫小学部male9383688.2588.25
2小兔小学部female9093188.2585.00
3小花小学部male8185388.2588.25
4小草小学部male8099188.2588.25
5小猫小学部male9388688.2588.25
6小鸭小学部male8898388.2585.00
7小兔小学部male8689188.2588.25
8小鸭初中部male8385485.0088.25
9小狗初中部female8185485.0088.25
10小花初中部male9283085.0085.00
11小草初中部male8494885.0085.00

5.3 方法三(使用transform一步到位)

df_new1["average_trans_score"] = df.groupby("grade")["score"].transform("mean")
df_new1
studentsgradesexscoremoneyaverage_scoreaverage_map_scoreaverage_trans_score
0小狗小学部female9584488.2588.2588.25
1小猫小学部male9383688.2588.2588.25
2小兔小学部female9093188.2585.0085.00
3小花小学部male8185388.2588.2588.25
4小草小学部male8099188.2588.2588.25
5小猫小学部male9388688.2588.2588.25
6小鸭小学部male8898388.2585.0085.00
7小兔小学部male8689188.2588.2588.25
8小鸭初中部male8385485.0088.2588.25
9小狗初中部female8185485.0088.2588.25
10小花初中部male9283085.0085.0085.00
11小草初中部male8494885.0085.0085.00

相关文章:

【pandas技巧】group by+agg+transform函数

目录 1. group by单个字段单个聚合 2. group by单个字段多个聚合 3. group by多个字段单个聚合 4. group by多个字段多个聚合 5. transform函数 studentsgradesexscoremoney0小狗小学部female958441小猫小学部male938362小鸭初中部male838543小兔小学部female909314小花小…...

一文解读WordPress网站的各类缓存-老白博客

缓存是一种重要的WordPress优化手段,用于提高网站的性能和加载速度。减少计算量,有效提升响应速度,让有限的资源服务更多的用户。本文老白博客便从自己的使用简单给大家介绍下WordPress的缓存,包括 站点缓存(Page Cach…...

从零开始:开发直播商城APP的技术指南

时下,直播商城APP已经成了线上购物、电子商务的核心组成,本文将为您提供一个全面的技术指南,帮助您从零开始开发一个直播商城APP。我们将涵盖所有关键方面,包括技术堆栈、功能模块、用户体验和安全性。 第一部分:技术…...

GZ035 5G组网与运维赛题第6套

2023年全国职业院校技能大赛 GZ035 5G组网与运维赛项(高职组) 赛题第6套 一、竞赛须知 1.竞赛内容分布 竞赛模块1--5G公共网络规划部署与开通(35分) 子任务1:5G公共网络部署与调试(15分) …...

分类预测 | Matlab实现KOA-CNN-GRU-selfAttention多特征分类预测(自注意力机制)

分类预测 | Matlab实现KOA-CNN-GRU-selfAttention多特征分类预测(自注意力机制) 目录 分类预测 | Matlab实现KOA-CNN-GRU-selfAttention多特征分类预测(自注意力机制)分类效果基本描述程序设计参考资料 分类效果 基本描述 1.Matla…...

【Qt】QString怎么转成int

2023年10月29日,周日晚上 第一种方法 这种方法会尝试将 QString 对象转换为 int 类型。如果转换成功,将返回转换后的 int 值;如果转换失败(例如,字符串中包含非数字字符),则返回 0。 QString…...

ubuntu 22.04 安装python-pcl

ubuntu 22.04 安装python-pcl 安装python-pcl修复bug 由于python-pcl库基本已经停止维护,所以Ubuntu22.04 在使用pip install python-pcl安装的时候会出现版本不适配的原因 安装python-pcl 使用Ubuntu22系统自带python3安装python-pcl,随后将下载的包拷…...

【题解】[GenshinOI Round 3 ]P9817 lmxcslD

题目传送门 分析 看到这道题我一开始是有点懵的,但是看了看数据范围,发现有几个点有 n 为质数 的特殊性质,结论先行,大胆猜测是不是可以贪心,所以先打了一个最傻的代码上去试试. void solve(){cin >> n >&…...

在pycharm中,远程操作服务器上的jupyter notebook

一、使用场景 现在我们有两台电脑,一台是拥有高算力的服务器,另一台是普通的轻薄笔记本电脑。如何在服务器上运行jupyter notebook,同时映射到笔记本电脑上的pycharm客户端中进行操作呢? 二、软件 pycharm专业版,jupy…...

SQL 运算符

SQL 运算符 运算符是保留字或主要用于 SQL 语句的 WHERE 子句中的字符,用于执行操作,例如:比较和算术运算。 这些运算符用于指定 SQL 语句中的条件,并用作语句中多个条件的连词。 常见运算符有以下几种: 算术运算符比…...

中间件安全-CVE 复现K8sDockerJettyWebsphere漏洞复现

目录 服务攻防-中间件安全&CVE 复现&K8s&Docker&Jetty&Websphere中间件-K8s中间件-Jetty漏洞复现CVE-2021-28164-路径信息泄露漏洞CVE-2021-28169双重解码信息泄露漏洞CVE-2021-34429路径信息泄露漏洞 中间件-Docker漏洞复现守护程序 API 未经授权访问漏洞…...

系列九、什么是Spring bean

一、什么是Spring bean 一句话,被Spring容器管理的bean就是Spring bean。...

轻量封装WebGPU渲染系统示例<4>-CubeMap/天空盒(源码)

当前示例源码github地址: https://github.com/vilyLei/voxwebgpu/blob/version-1.01/src/voxgpu/sample/ImgCubeMap.ts 此示例渲染系统实现的特性: 1. 用户态与系统态隔离。 2. 高频调用与低频调用隔离。 3. 面向用户的易用性封装。 4. 渲染数据和渲染机制分离。 5. 用户…...

Linux 环境变量 二

目录 获取环境变量的后两种方法 环境变量具有全局属性 内建命令 和环境变量相关的命令 c语言访问地址 重新理解地址 地址空间 获取环境变量的后两种方法 main函数的第三个参数 :char* env[ ] 也是一个指针数组,我们可以把它的内容打印出来看看。 …...

Beyond Compare4 30天试用到期的解决办法

相信很多小伙伴都有在使用Beyond Compare 4软件,如果我们没有激活该软件,就只有30天的评估使用期,那么过了这30天后我们怎么继续使用呢?下面小编就来为大家介绍方法。 打开Beyond Compare4,提示已经超出30天试用期限制…...

sentinel规则持久化-规则同步nacos-最标准配置

官方参考文档&#xff1a; 动态规则扩展 alibaba/Sentinel Wiki GitHub 需要修改的代码如下&#xff1a; 为了便于后续版本集成nacos&#xff0c;简单讲一下集成思路 1.更改pom 修改sentinel-datasource-nacos的范围 将 <dependency><groupId>com.alibaba.c…...

【Linux】tail命令使用

tail 命令可用于查看文件的内容&#xff0c;有一个常用的参数 -f 常用于查阅正在改变的日志文件。 语法 tail [参数] [文件] tail命令 -Linux手册页 著者 由保罗鲁宾、大卫麦肯齐、伊恩兰斯泰勒和吉姆梅耶林撰写。 命令选项及作用 执行令 tail --help 执行命令结果 参…...

【数据结构】面试OJ题——时间复杂度2

目录 一&#xff1a;移除元素 思路&#xff1a; 二&#xff1a;删除有序数组中的重复项 思路&#xff1a; 三&#xff1a;合并两个有序数组 思路1&#xff1a; 什么&#xff1f;你不知道qsort&#xff08;&#xff09; 思路2&#xff1a; 一&#xff1a;移除元素 27. 移…...

LibreOffice编辑excel文档如何在单元格中输入手动换行符

用WPS编辑excel文档的时候&#xff0c;要在单元格中输入手动换行符&#xff0c;可以先按住Alt键&#xff0c;然后回车。 而用LibreOffice编辑excel文档&#xff0c;要在单元格中输入手动换行符&#xff0c;可以先按住Ctrl键&#xff0c;然后回车。例如&#xff1a;...

ideaSSM在线商务管理系统VS开发mysql数据库web结构java编程计算机网页源码maven项目

一、源码特点 SSM 在线商务管理系统是一套完善的信息管理系统&#xff0c;结合SSM框架和bootstrap完成本系统&#xff0c;对理解JSP java编程开发语言有帮助系统采用SSM框架&#xff08;MVC模式开发&#xff09;&#xff0c;系统具有完整的源代码 和数据库&#xff0c;系统主…...

渗透实战PortSwigger靶场-XSS Lab 14:大多数标签和属性被阻止

<script>标签被拦截 我们需要把全部可用的 tag 和 event 进行暴力破解 XSS cheat sheet&#xff1a; https://portswigger.net/web-security/cross-site-scripting/cheat-sheet 通过爆破发现body可以用 再把全部 events 放进去爆破 这些 event 全部可用 <body onres…...

蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练

前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1)&#xff1a;从基础到实战的深度解析-CSDN博客&#xff0c;但实际面试中&#xff0c;企业更关注候选人对复杂场景的应对能力&#xff08;如多设备并发扫描、低功耗与高发现率的平衡&#xff09;和前沿技术的…...

vue3+vite项目中使用.env文件环境变量方法

vue3vite项目中使用.env文件环境变量方法 .env文件作用命名规则常用的配置项示例使用方法注意事项在vite.config.js文件中读取环境变量方法 .env文件作用 .env 文件用于定义环境变量&#xff0c;这些变量可以在项目中通过 import.meta.env 进行访问。Vite 会自动加载这些环境变…...

Android第十三次面试总结(四大 组件基础)

Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成&#xff0c;用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机&#xff1a; ​onCreate()​​ ​调用时机​&#xff1a;Activity 首次创建时调用。​…...

第7篇:中间件全链路监控与 SQL 性能分析实践

7.1 章节导读 在构建数据库中间件的过程中&#xff0c;可观测性 和 性能分析 是保障系统稳定性与可维护性的核心能力。 特别是在复杂分布式场景中&#xff0c;必须做到&#xff1a; &#x1f50d; 追踪每一条 SQL 的生命周期&#xff08;从入口到数据库执行&#xff09;&#…...

wpf在image控件上快速显示内存图像

wpf在image控件上快速显示内存图像https://www.cnblogs.com/haodafeng/p/10431387.html 如果你在寻找能够快速在image控件刷新大图像&#xff08;比如分辨率3000*3000的图像&#xff09;的办法&#xff0c;尤其是想把内存中的裸数据&#xff08;只有图像的数据&#xff0c;不包…...

性能优化中,多面体模型基本原理

1&#xff09;多面体编译技术是一种基于多面体模型的程序分析和优化技术&#xff0c;它将程序 中的语句实例、访问关系、依赖关系和调度等信息映射到多维空间中的几何对 象&#xff0c;通过对这些几何对象进行几何操作和线性代数计算来进行程序的分析和优 化。 其中&#xff0…...

中国政务数据安全建设细化及市场需求分析

(基于新《政务数据共享条例》及相关法规) 一、引言 近年来,中国政府高度重视数字政府建设和数据要素市场化配置改革。《政务数据共享条例》(以下简称“《共享条例》”)的发布,与《中华人民共和国数据安全法》(以下简称“《数据安全法》”)、《中华人民共和国个人信息…...

十二、【ESP32全栈开发指南: IDF开发环境下cJSON使用】

一、JSON简介 JSON&#xff08;JavaScript Object Notation&#xff09;是一种轻量级的数据交换格式&#xff0c;具有以下核心特性&#xff1a; 完全独立于编程语言的文本格式易于人阅读和编写易于机器解析和生成基于ECMAScript标准子集 1.1 JSON语法规则 {"name"…...

XXE漏洞知识

目录 1.XXE简介与危害 XML概念 XML与HTML的区别 1.pom.xml 主要作用 2.web.xml 3.mybatis 2.XXE概念与危害 案例&#xff1a;文件读取&#xff08;需要Apache >5.4版本&#xff09; 案例&#xff1a;内网探测&#xff08;鸡肋&#xff09; 案例&#xff1a;执行命…...