当前位置: 首页 > news >正文

OpenCV常用功能——灰度处理和图像二值化处理

文章目录

  • 一、灰度处理
      • 1.1 cvtColor函数
  • 二、图像二值化处理
      • 2.1 全局阈值
      • 2.2 自适应阈值

一、灰度处理

1.1 cvtColor函数

函数原型:

cv2.cvtColor(src, code[, dst[, dstCn]]) -> dst

功能:转换图像颜色空间。
参数

  • src: 输入图像。
  • code: 颜色空间转换代码。可以取常量cv2.COLOR_BGR2GRAY或cv2.COLOR_RGB2GRAY。
  • dst: 输出图像。
  • dstCn: 输出图像的通道数,如果设置为0,则跟随转换代码自动设置。

内置函数示例代码:

import cv2
img = cv2.imread("color.jpg")
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)cv2.imshow("Gray", img_gray)
cv2.waitKey(0)
cv2.destroyAllWindows()

灰度处理的原理是将彩色图像转换成灰度图像,通常使用的方法是将彩色图像的RGB三个通道的值加权平均,得到一个灰度值,再用这个灰度值代替RGB三个通道的值,从而得到灰度图像。常用的加权平均公式是:
g r a y = 0.299 × R + 0.587 × G + 0.114 × B gray = 0.299 \times R + 0.587 \times G + 0.114 \times B gray=0.299×R+0.587×G+0.114×B
其中, R 、 G 、 B R、G、B RGB分别是彩色图像的红、绿、蓝通道的值, 0.299 、 0.587 、 0.114 0.299、0.587、0.114 0.2990.5870.114是加权系数,这些系数是心理物理学中根据人眼对不同颜色敏感度的实验结果得出的。这个公式也称为亮度加权法,能够比较好地保留彩色图像的明暗对比度。

通过原理实现灰度处理代码:

import cv2
img = cv2.imread('lean.jpg')
img = cv2.resize(img, (240, 240), interpolation=cv2.INTER_CUBIC)
height, width = img.shape[:2]
gray = np.zeros((height, width, 1), dtype="uint8")
for i in range(height):for j in range(width):gray[i][j] = img[i][j][0] * 0.114 + img[i][j][1] * 0.587 + img[i][j][2] * 0.299  # 加权值法# gray[i][j] = (img[i][j][0] +img[i][j][1]+img[i][j][2])/3#平均值法# gray[i][j] = max(img[i][j][0],img[i][j][1],img[i][j][2]) #最大值法cv2.imshow("Gray", gray)
cv2.waitKey(0)
cv2.destroyAllWindows()

上述代码逐个像素点计算灰度值,然后用灰度值代替RGB三个通道的值,得到灰度图像并显示出来。值得注意的是,这种方法虽然简单易懂,但计算每个像素点的灰度值,效率较低,不适用于处理较大的图像。在实际中,我们可以使用OpenCV提供的函数来实现灰度处理,以提高程序的执行效率。

注意:灰度图像在Python中数据类型是numpy的uint8类型,即8位无符号整型。

二、图像二值化处理

图像二值化处理是将灰度图像上的像素点转化为黑白两种颜色的处理方法。其原理是将灰度图像的像素值按一定的阈值进行分割,大于等于阈值的像素值设为一个值(通常是255),小于阈值的像素值设为另一个值(通常是0)。这样得到的图像就只有黑白两种颜色,便于进行一些形态学处理和特征提取。

图像二值化有两种方法:全局阈值和自适应阈值全局阈值是指将整个图像的像素值都按照同一个阈值进行分割,而自适应阈值则是将图像分割成若干个小块,然后对每个小块单独计算阈值,从而得到更准确的分割结果。下面分别介绍这两种方法的实现方式。

2.1 全局阈值

在OpenCV中,使用cv2.threshold()函数可以实现全局阈值二值化。函数原型如下:

retval, dst = cv2.threshold(src, thresh, maxval, type)

参数说明:

  • src为输入图像,必须为灰度图。
  • dst为输出图像,尺寸和类型与原图像相同。
  • thresh为设定的阈值。
  • maxval为最大值,当像素值大于阈值时,赋值为maxval。
  • type为阈值处理的类型,包括以下几种类型:
    • cv2.THRESH_BINARY:二值化,当像素值大于阈值时,赋值为maxval,否则赋值为0。
    • cv2.THRESH_BINARY_INV:反二值化,当像素值大于阈值时,赋值为0,否则赋值为maxval。
    • cv2.THRESH_TRUNC:截断,当像素值大于阈值时,赋值为阈值,否则不变。
    • cv2.THRESH_TOZERO:阈值以下归零,当像素值小于阈值时,置为0,否则不变。
    • cv2.THRESH_TOZERO_INV:阈值以上归零,当像素值大于阈值时,置为0,否则不变。

示例代码如下:

import cv2# 加载灰度图
img_gray = cv2.imread('lena_gray.jpg', 0)# 全局阈值二值化
retval, img_binary = cv2.threshold(img_gray, 128, 255, cv2.THRESH_BINARY)# 显示图像
cv2.imshow('original', img_gray)
cv2.imshow('binary', img_binary)
cv2.waitKey()
cv2.destroyAllWindows()

其中,使用cv2.imread()加载灰度图时,第二个参数必须设置为0,表示加载灰度图。

2.2 自适应阈值

在OpenCV中,使用cv2.adaptiveThreshold()函数可以实现自适应阈值二值化。函数原型和前面的cv2.threshold()函数类似,但多了两个参数:

dst = cv2.adaptiveThreshold(src, maxval, adaptiveMethod, thresholdType, blockSize, C)

参数说明:

  • src为输入图像,必须为灰度图。
  • maxValue为最大值,当像素值大于阈值时,赋值为maxValue。
  • adaptiveMethod为自适应阈值算法类型,包括以下两种类型:
    • cv2.ADAPTIVE_THRESH_MEAN_C:计算每个小区域的平均灰度值作为阈值。
    • cv2.ADAPTIVE_THRESH_GAUSSIAN_C:计算每个小区域的高斯加权平均灰度值作为阈值。
  • thresholdType为阈值处理的类型,同全局阈值二值化函数。
  • blockSize为块大小,要求为奇数,代表自适应阈值计算时使用的小区域大小。
  • C为常数,阈值减小的常数。
    实例代码如下:
import cv2# 加载灰度图
img_gray = cv2.imread('lena_gray.jpg', 0)# 自适应阈值二值化
img_binary = cv2.adaptiveThreshold(img_gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 127, 1)# 显示图像
cv2.imshow('original', img_gray)
cv2.imshow('binary', img_binary)
cv2.waitKey()
cv2.destroyAllWindows()

其中,使用cv2.ADAPTIVE_THRESH_MEAN_C作为自适应阈值算法,计算每个小块的平均值;使用cv2.THRESH_BINARY作为阈值处理的类型。阈值大小由blockSizeC两个参数共同决定,可以通过调整这两个参数来得到更适合的分割效果。

相关文章:

OpenCV常用功能——灰度处理和图像二值化处理

文章目录 一、灰度处理1.1 cvtColor函数 二、图像二值化处理2.1 全局阈值2.2 自适应阈值 一、灰度处理 1.1 cvtColor函数 函数原型: cv2.cvtColor(src, code[, dst[, dstCn]]) -> dst功能:转换图像颜色空间。 参数: src: 输入图像。co…...

excel巧用拼接函数CONCAT输出JSON、SQL字符串

一、前言 工作中有时候需要用Excel对数据进行组装,需要输出JSON或者SQL语句,然后通过脚本或Java程序完成一些特定功能,总结了一下用到的函数,方便以后使用。这里使用的是WPS软件。 二、输出JSON 例如:需要将几列数据…...

Redis桌面管理工具:Redis Desktop Manager for Mac

Redis Desktop Manager是一款非常实用的Redis管理工具,它不仅提供了方便易用的图形用户界面,还支持多种Redis数据结构,可以帮助用户轻松地完成Redis数据库的管理工作。 以下是一些推荐Redis Desktop Manager的理由: 多平台支持&a…...

基于SSM的汽车维修管理系统

文章目录 项目介绍主要功能截图:部分代码展示设计总结项目获取方式🍅 作者主页:超级无敌暴龙战士塔塔开 🍅 简介:Java领域优质创作者🏆、 简历模板、学习资料、面试题库【关注我,都给你】 🍅文末获取源码联系🍅 项目介绍 基于SSM的汽车维修管理系统,java项目。 …...

volatile 系列之如何解决可见性问题

下面我们来看一下volatile是如何解决可见性问题的呢?如果我们针对stop字段增加volatile关键字: public static volatile boolean stopfalse; 然后,使用hsdis工具获取IT编译器生成的汇编指令来查看volatile写操作带来的影响和变化。 接着,设置J…...

网络安全(黑客技术)—小白自学

目录 一、自学网络安全学习的误区和陷阱 二、学习网络安全的一些前期准备 三、网络安全学习路线 四、学习资料的推荐 想自学网络安全(黑客技术)首先你得了解什么是网络安全!什么是黑客! 网络安全可以基于攻击和防御视角来分类&am…...

MTK AEE_EXP调试方法及user版本打开方案

一、AEE介绍 AEE (Android Exception Engine)是安卓的一个异常捕获和调试信息生成机制。 手机发生错误(异常重启/卡死)时生成db文件(一种被加密过的二进制文件)用来保存和记录异常发生时候的全部内存信息,经过调试和仿真这些信息,能够追踪到异常的缘由。 二、调试方法…...

京东平台数据分析:2023年9月京东扫地机器人行业品牌销售排行榜

鲸参谋监测的京东平台9月份扫地机器人市场销售数据已出炉! 根据鲸参谋平台的数据显示,9月份,京东平台扫地机器人的销量近14万,环比增长约2%,同比降低约4%;销售额为2.9亿,环比降低约4%&#xff0…...

pytorch 笔记:index_select

1 基本使用方法 index_select 是 PyTorch 中的一个非常有用的函数,允许从给定的维度中选择指定索引的张量值 torch.index_select(input, dim, index, outNone) -> Tensorinput从中选择数据的源张量dim从中选择数据的维度index 一个 1D 张量,包含你想…...

面试算法43:在完全二叉树中添加节点

题目 在完全二叉树中,除最后一层之外其他层的节点都是满的(第n层有2n-1个节点)。最后一层的节点可能不满,该层所有的节点尽可能向左边靠拢。例如,图7.3中的4棵二叉树均为完全二叉树。实现数据结构CBTInserter有如下3种…...

Python算法例3 检测2的幂次

1. 问题描述 检测一个整数n是否为2的幂次。 2. 问题示例 n8,返回True;n6,返回False。 3.代码实现 # 采用UTF-8编码格式 # 参数n是一个整数 # 返回True或者False class Solution:def checkPowerOf2(self,n):ans 1for i in range(31):if …...

线扫相机DALSA--采集卡Base模式设置

采集卡默认加载“1 X Full Camera Link”固件,Base模式首先要将固件更新为“2 X Base Camera Link”。 右键SCI图标,选择“打开文件所在的位置”,找到并打开SciDalsaConfig的Demo,如上图所示: 左键单击“获取相机”&a…...

Gitee 发行版

Gitee 发行版 1、Gitee 发行版管理2、项目仓库中创建发行版本3、项目中导入3.1 gradle配置3.2 dependencies执行正常,包没有下载 1、Gitee 发行版管理 Gitee 发行版(Release)管理 2、项目仓库中创建发行版本 按照Gitee官网操作就行 3、项目…...

python面向对象

用animal举例代码如下: class Animal:name age 0def call(self):print(I am %s, and I\m %d years old. % (self.name, self.age))def isMe(self, name) -> bool:return self.name nameanimal Animal() animal.name coco animal.age 10 animal.call()prin…...

Go基础——数组、切片、集合

目录 1、数组2、切片3、集合4、范围(range) 1、数组 数组是具有相同唯一类型的一组已编号且长度固定的数据项序列,这种类型可以是任意的原始类型例如整型、字符串或者自定义类型。 Go 语言数组声明需要指定元素类型及元素个数,与…...

Error: no matching distribution found for tensorflow-cpu==2.6.*

目录 install_tensorflow()安装过程中遇到的问题 查找解决方案过程中: 解决办法: install_tensorflow()安装过程中遇到的问题 在服务器上安装tensorflow时,遇到了一个报错信息: 在网上找到一个类似的错误(TensorFlow…...

nginx 进程模型

文章目录 nginx运行模式与进程模式进程模式流程图默认初始化运行模式与进程模式(宏展开)cpu_affinity多CPU绑定合理性判定Nginx的daemon创建(os/unix/ngx_daemon.c)运行模式、进程模式启动 多进程模式下master处理流程设置进程信号、初始化信号掩码、屏蔽…...

TypeScript - 枚举类型 -字符型枚举

什么是枚举 枚举就是有固定的元素的一个对象。 对象的元素可以直接列举出来。 什么是字符型枚举 字符型枚举,就是元素的值是字符串。 就这么简单。 定义一个我看看 来,让我们实际看一下字符型的枚举。 // 定义字符型枚举 enum COLOR2{RED red,BLUE blu…...

分布式锁-Redis红锁解决方案

一 分布式锁的概念 1:概念 分布式锁(多服务共享锁) 在分布式的部署环境下,通过锁机制来让多客户端互斥的对共享资源进行访问控制分布式系统不同进程共同访问共享资源的一种锁的实现。如果不同的系统或同一个系统的不同主机之间共…...

【Ubuntu 终端终结者Ctrl shift e无法垂直分页解决办法】

Ubuntu 终端终结者Ctrl shift e无法垂直分页解决办法 错误原因解决办法 错误原因 这是因为ibus输入法有一个快捷键占用了这个终端终结者的快捷键 解决办法 打开命令行输入 ibus-setup进入到如下页面随后将其中的表情注释的快捷键删除即可...

以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:

一、属性动画概述NETX 作用:实现组件通用属性的渐变过渡效果,提升用户体验。支持属性:width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项: 布局类属性(如宽高)变化时&#…...

基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容

基于 ​UniApp + WebSocket​实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配​微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...

MMaDA: Multimodal Large Diffusion Language Models

CODE : https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA,它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构&#xf…...

如何为服务器生成TLS证书

TLS(Transport Layer Security)证书是确保网络通信安全的重要手段,它通过加密技术保护传输的数据不被窃听和篡改。在服务器上配置TLS证书,可以使用户通过HTTPS协议安全地访问您的网站。本文将详细介绍如何在服务器上生成一个TLS证…...

论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)

笔记整理:刘治强,浙江大学硕士生,研究方向为知识图谱表示学习,大语言模型 论文链接:http://arxiv.org/abs/2407.16127 发表会议:ISWC 2024 1. 动机 传统的知识图谱补全(KGC)模型通过…...

【HTML-16】深入理解HTML中的块元素与行内元素

HTML元素根据其显示特性可以分为两大类:块元素(Block-level Elements)和行内元素(Inline Elements)。理解这两者的区别对于构建良好的网页布局至关重要。本文将全面解析这两种元素的特性、区别以及实际应用场景。 1. 块元素(Block-level Elements) 1.1 基本特性 …...

IoT/HCIP实验-3/LiteOS操作系统内核实验(任务、内存、信号量、CMSIS..)

文章目录 概述HelloWorld 工程C/C配置编译器主配置Makefile脚本烧录器主配置运行结果程序调用栈 任务管理实验实验结果osal 系统适配层osal_task_create 其他实验实验源码内存管理实验互斥锁实验信号量实验 CMISIS接口实验还是得JlINKCMSIS 简介LiteOS->CMSIS任务间消息交互…...

蓝桥杯 冶炼金属

原题目链接 🔧 冶炼金属转换率推测题解 📜 原题描述 小蓝有一个神奇的炉子用于将普通金属 O O O 冶炼成为一种特殊金属 X X X。这个炉子有一个属性叫转换率 V V V,是一个正整数,表示每 V V V 个普通金属 O O O 可以冶炼出 …...

JS手写代码篇----使用Promise封装AJAX请求

15、使用Promise封装AJAX请求 promise就有reject和resolve了,就不必写成功和失败的回调函数了 const BASEURL ./手写ajax/test.jsonfunction promiseAjax() {return new Promise((resolve, reject) > {const xhr new XMLHttpRequest();xhr.open("get&quo…...

在 Spring Boot 项目里,MYSQL中json类型字段使用

前言&#xff1a; 因为程序特殊需求导致&#xff0c;需要mysql数据库存储json类型数据&#xff0c;因此记录一下使用流程 1.java实体中新增字段 private List<User> users 2.增加mybatis-plus注解 TableField(typeHandler FastjsonTypeHandler.class) private Lis…...