当前位置: 首页 > news >正文

3 — NLP 中的标记化:分解文本数据的艺术

一、说明

        这是一个系列文章的第三篇文章, 文章前半部分分别是:       

  • 1 — NLP 的文本预处理技术
  • 2 — NLP中的词干提取和词形还原:文本预处理技术

        在本文中,我们将介绍标记化主题。在开始之前,我建议您阅读我之前介绍的关于文本预处理的 2 篇文章。 

二、什么是记号化Tokenization?

        在处理文本数据时,标记化是最常见的任务之一。它是将句子或文本分解为单个单词或子单词(称为标记)的过程。

        每个标记(单词、短语或符号)代表一个有意义的单元,它在理解文本的结构和含义方面起着至关重要的作用。

2.1 为什么记号化对 NLP 至关重要?

        让我们讨论一下在通过文本分析分析社交媒体评论时标记化的重要性。

        想象一下,一家公司想要监控社交媒体平台上发布的有关其产品和服务的评论。这些评论包含有关客户满意度、产品质量和潜在问题的宝贵信息。然而,这些评论通常写得很复杂、冗长,有时还会出现语言错误。

        以下是令牌化在此方案中发挥关键作用的方式:

        理解文本: 社交媒体评论通常冗长而复杂。标记化有助于将这些注释分解为单词和句子,有助于理解每个单词或符号的含义。例如,“我非常满意!”这句话可以被标记成两个单独的标记:“我是”和“非常满意”。

        情绪分析: 公司旨在了解客户满意度。标记化可以帮助识别正面或负面表达。例如,短语“我有一个很棒的经历”表示一种积极的情绪,因为存在“很棒”这个词。

        词频:标记化可用于计算特定单词的频率。通过了解哪些词最常使用,公司可以确定与其产品或服务相关的关键主题。

        文本分类:将评论分类为特定类别或情绪至关重要。例如,公司可能希望单独分析与特定产品相关的评论。标记化有助于将评论分类为这些类别。

        总之,标记化是 NLP 的基本步骤,它对于从复杂的文本数据(如社交媒体评论)中理解和提取有价值的见解至关重要。它使公司能够根据客户反馈和情绪进行分析并做出明智的决策。这个例子说明了标记化在现实生活中的 NLP 应用程序中如何有效地处理、理解和分析文本数据。

        现在我们知道了什么是标记化,让我们看看一些标记化技术。

2.2 NLP中的标记化是如何工作的?

        有不同的方法和库可用于执行标记化。 NLTK、Gensim 和 Keras 是可用于完成该任务的一些库。 标记化可用于分隔单词或句子。如果使用某种分离技术将文本拆分为单词,则称为单词标记化,对句子进行相同的分离称为句子标记化。

Word Tokenization

import nltk
from nltk.tokenize import word_tokenizetext = "In this article, we are learning word tokenization using NLTK."tokens = word_tokenize(text)
print(tokens)
Output:
['In', 'this', 'article', ',', 'we', 'are', 'learning', 'word', 'tokenization', 'using', 'NLTK', '.']

三、句子标记化

首先,安装 NLTK 库并下载 Punkt tokenizer 模型(如果尚未下载)。

pip install nltk
nltk.download('punkt')

        安装完成后,我们继续使用句子标记化代码。

import nltk
from nltk.tokenize import sent_tokenizetext = "Hello! Sentence tokenization is essential for breaking down a text intoits constituent sentences, which is a fundamental step in natural languageprocessing. It allows you to work with sentences individually, making it easier to perform tasks like sentiment analysis, text summarization,and machine translation. NLTK provides a simple way to achieve sentence tokenization in Python."sentences = sent_tokenize(text)for sentence in sentences:print(sentence)
Output:
Hello!
Sentence tokenization is essential for breaking down a text into its constituent sentences, which is a fundamental step in natural language processing.
It allows you to work with sentences individually, making it easier to perform tasks like sentiment analysis, text summarization, and machine translation.
NLTK provides a simple way to achieve sentence tokenization in Python.

四、字符标记化

text = "Hello World!"characters = list(text)print("Characters:", characters)
Output:
Characters: ['H', 'e', 'l', 'l', 'o', ' ', 'W', 'o', 'r', 'l', 'd', '!']

        您还可以使用 spaCy、Keras 和 Gensim 执行这些操作。当我将其添加到 Github 时,我将在此处添加链接。

我将在另一篇文章中更详细地介绍“N-gram 标记化”的主题。

五、结论

        通过本文,我们了解了 NLTK 的不同分词器。

        总之,标记化是许多 NLP 任务中的关键预处理步骤。它是 NLP 的基础,因为它将原始文本数据转换为可以由 NLP 模型和算法有效处理和分析的格式。它是各种 NLP 任务的构建块,能够从文本数据中提取有意义的信息和模式。

艾塞尔·艾丁

相关文章:

3 — NLP 中的标记化:分解文本数据的艺术

一、说明 这是一个系列文章的第三篇文章, 文章前半部分分别是: 1 — NLP 的文本预处理技术2 — NLP中的词干提取和词形还原:文本预处理技术 在本文中,我们将介绍标记化主题。在开始之前,我建议您阅读我之前介绍…...

C++-类与对象(上)

一、 auto关键字 1.自动识别数据类型 2.auto的初始化 3.auto简化for循环 nullptr的使用 二、类与对象 1.c中类的定义 2.c语言与c的比较 3.类的访问限定符以及封装 3.1访问限定符 3.2封装 3.3类的作用域 3.4类的声明与定义分离 🗡CSDN主页:d1ff1cult.&…...

多进程间通信学习之无名管道

无名管道:首先它是内核空间的实现机制;然后只能用于亲缘进程间通信;它在内核所占的大小是64KB;它采用半双工的通信方式;请勿使用lseek函数;读写特点:若读端存在写管道,那么有多少数据…...

flink常用的几种调优手段的优缺点

背景: 不管是基于减少反压还是基于减少端到端的延迟的目的,我们有时候都需要对flink进行调优,本文就整理下几种常见的调优手段以及他们的优缺点 flink调优手段 1.使用事件时间EventTime模式时,可以设置水位线发送的时间间隔,比…...

如何选择安全又可靠的文件数据同步软件?

数据实时同步价值体现在它能够确保数据在多个设备或系统之间实时更新和保持一致。这种技术可以应用于许多领域,如电子商务、社交媒体、金融服务等。在这些领域中,数据实时同步可以带来很多好处,如提高工作效率、减少数据不一致、提高用户体验…...

使用反射调用类的私有内部类的私有方法

文章目录 使用反射调用类的私有方法类实现方法实现代码 使用反射调用类的私有内部类的私有方法类实现方法实现代码 在进行单元测试时,我们往往需要直接访问某个类的内部类或者某个类的私有方法,此时正常的调用就无能为力了,因此我们可以使用反…...

记一次 AWD 比赛中曲折的 Linux 提权

前提背景: 今天一场 AWD 比赛中,遇到一个场景:PHP网站存在SQL注入和文件上传漏洞, MYSQL当前用户为ROOT,文件上传蚁剑连接SHELL是权限很低的用户。我需要想办法进行提权,才能读取到 /root 目录下的 flag。 一、sqlmap …...

[SpringCloud] Feign 与 Gateway 简介

目录 一、Feign 简介 1、RestTemplate 远程调用中存在的问题 2、定义和使用 Feign 客户端 3、Feign 自定义配置 4、Feign 性能优化 5、Feign 最佳实践 6、Feign 使用问题汇总 二、Gateway 网关简介 1、搭建网关服务 2、路由断言工厂 3、路由的过滤器配置 4、全局过…...

[Unity] 个人编码规范与命名准则参考

Unity C# 在写的过程中, 和纯 C# 是有很大出入的. 甚至说, Unity C# 就是邪教. 例如它的命名规范与 C# 是不一致的, 而且由于游戏引擎的介入, 编写时的习惯相较于 C# 来讲, 也需要有所改变. 通用编码规范 常见的一些编码规范就不需要过多提及了, 这里只做简单列举. 添加合适…...

堆栈与队列算法-以链表来实现队列

目录 堆栈与队列算法-以链表来实现队列 C代码 堆栈与队列算法-以链表来实现队列 队列除了能以数组的方式来实现外,也可以用链表来实现。在声明队列的类中,除了和队列相关的方法外,还必须有指向队列前端和队列末尾的指针,即fron…...

快速入门:使用 Spring Boot 构建 Web 应用程序

前言 本文将讨论以下主题: 安装 Java JDK、Gradle 或 Maven 和 Eclipse 或 IntelliJ IDEA创建一个新的 Spring Boot 项目运行 Spring Boot 应用程序编写一个简单的 Web 应用程序打包应用程序以用于生产环境 通过这些主题,您将能够开始使用 Spring Boo…...

01.CentOS7静默安装oracle11g

CentOS7静默安装oracle11g 一、下载Oracle11g安装包二、开始安装oracle11g三、配置Oracle监听程序四、添加数据库实例五、设置开机启动六、登录后解除锁定 一、下载Oracle11g安装包 下载链接:https://pan.baidu.com/s/1gcLMFGX7-8ju7OoFOFLzQA 提取码:6…...

SASE安全访问服务边缘

自存用: 参考文档: 什么是安全访问服务边缘 (SASE)? | Microsoft 安全 网安人必读 |一文读懂SASE - 知乎...

k8s集群升级

目录 1. 部署cri-docker (所有集群节点) 2. 升级master节点 3. 升级worker节点 4. 部署containerd 1. 部署cri-docker (所有集群节点) k8s从1.24版本开始移除了dockershim,所以需要安装cri-docker插件才能使用docker …...

redis原理 主从同步和哨兵集群

主从库如何实现数据一致 我们总说的 Redis 具有高可靠性,又是什么意思呢?其实,这里有两层含义:一是数据尽量少丢失,二是服务尽量少中断。AOF 和 RDB 保证了前者,而对于后者,Redis 的做法就是增…...

四季古诗赏析

春晓 春眠不觉晓,处处闻啼鸟。夜来风雨声,花落知多少。 夏意 别院深深夏簟清,石榴开遍透帘明。树阴满地日当午,梦觉流莺时一声。 秋词 自古逢秋悲寂寥,我言秋日胜春朝。晴空一鹤排云上,便引诗情到碧霄。 …...

【网络协议】聊聊套接字socket

网络编程我们知道是通过socket进行编程的,其实socket也是基于TCP和UDP协议进行编程的。但是在socket层面是感知不到下层的,所以在设置参数的时候,其实是端到端协议智商的网络层和传输层。TCP是数据流所以设置为SOCK_STREAM,而UDP是…...

GEO生信数据挖掘(十一)STRING数据库PPI蛋白互作网络 Cytoscape个性化绘图【SCI 指日可待】

GEO生信数据挖掘(十)肺结核数据-差异分析-WGCNA分析(900行代码整理注释更新版本) 通过 前面十篇文章的学习,我们应该已经可以获取到一个”心仪的基因列表“了,相较于原始基因数量,这个列表的数…...

api接口更新钉钉文档

class OperateKnowledgeBaseExcel():robot_code # agent_id #app_key #群机器人app_secret #群机器人def __init__(self,union_id, workbook_id, worksheet_id):self.union_id union_idself.workbook_id workbook_id # 获取方式:... &g…...

Android---如何同view进行渲染

ViewRootImpl 在 Activity、window 和 View 三者关系之间起着承上启下的作用。一方面,ViewRootImpl 中通过 Binder 通信机制,远程调用 WindowSession 将 View 添加到 Window 中;另一方面,ViewRootImpl 在添加 View 之前&#xff0…...

1688商品列表API与其他数据源的对接思路

将1688商品列表API与其他数据源对接时,需结合业务场景设计数据流转链路,重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点: 一、核心对接场景与目标 商品数据同步 场景:将1688商品信息…...

如何为服务器生成TLS证书

TLS(Transport Layer Security)证书是确保网络通信安全的重要手段,它通过加密技术保护传输的数据不被窃听和篡改。在服务器上配置TLS证书,可以使用户通过HTTPS协议安全地访问您的网站。本文将详细介绍如何在服务器上生成一个TLS证…...

css的定位(position)详解:相对定位 绝对定位 固定定位

在 CSS 中,元素的定位通过 position 属性控制,共有 5 种定位模式:static(静态定位)、relative(相对定位)、absolute(绝对定位)、fixed(固定定位)和…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

成都鼎讯硬核科技!雷达目标与干扰模拟器,以卓越性能制胜电磁频谱战

在现代战争中,电磁频谱已成为继陆、海、空、天之后的 “第五维战场”,雷达作为电磁频谱领域的关键装备,其干扰与抗干扰能力的较量,直接影响着战争的胜负走向。由成都鼎讯科技匠心打造的雷达目标与干扰模拟器,凭借数字射…...

Java线上CPU飙高问题排查全指南

一、引言 在Java应用的线上运行环境中,CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时,通常会导致应用响应缓慢,甚至服务不可用,严重影响用户体验和业务运行。因此,掌握一套科学有效的CPU飙高问题排查方法&…...

推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材)

推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材) 这个项目能干嘛? 使用 gemini 2.0 的 api 和 google 其他的 api 来做衍生处理 简化和优化了文生图和图生图的行为(我的最主要) 并且有一些目标检测和切割(我用不到) 视频和 imagefx 因为没 a…...

无人机侦测与反制技术的进展与应用

国家电网无人机侦测与反制技术的进展与应用 引言 随着无人机(无人驾驶飞行器,UAV)技术的快速发展,其在商业、娱乐和军事领域的广泛应用带来了新的安全挑战。特别是对于关键基础设施如电力系统,无人机的“黑飞”&…...

​​企业大模型服务合规指南:深度解析备案与登记制度​​

伴随AI技术的爆炸式发展,尤其是大模型(LLM)在各行各业的深度应用和整合,企业利用AI技术提升效率、创新服务的步伐不断加快。无论是像DeepSeek这样的前沿技术提供者,还是积极拥抱AI转型的传统企业,在面向公众…...

aardio 自动识别验证码输入

技术尝试 上周在发学习日志时有网友提议“在网页上识别验证码”,于是尝试整合图像识别与网页自动化技术,完成了这套模拟登录流程。核心思路是:截图验证码→OCR识别→自动填充表单→提交并验证结果。 代码在这里 import soImage; import we…...