[量化投资-学习笔记004]Python+TDengine从零开始搭建量化分析平台-EMA均线
在之前的文章中用 Python 直接计算的 MA 均线,但面对 EMA 我认怂了。
Python+TDengine从零开始搭建量化分析平台-MA均线的多种实现方式
高数是我们在大学唯一挂过的科。这次直接使用 Pandas 库的 DataFrame.ewm 函数,便捷又省事。
并且用 Pandas 直接对之前 MA 均线进行改写。
我一直同意:I would rather be vaguely right than precisely wrong.
EMA 公式:
EMA(t)=平滑常数*当前价格+(1-平滑常数)*EMA(t-1)
目录
- 1. 获取数据
- 2.计算均线
- 3. 绘制图形
- 题外话
- 1. 均线的周期
- 2. 均线的使用
1. 获取数据
还是使用 Restful 方式从 TDengine 查询数据,并转换成 DataFrame 格式。想看获取数据完整代码的同学,可以翻我之前的笔记。
##SQL
st = '2022-08-01'
et = '2022-10-01'
sql = 'select last(tdate),last(close) from trade_data_a.tdata where fcode="000001" and tdate>="'+st+'" and tdate<="'+et+'"' +' interval(1d) '## 通过Restful 从 TDengine 获取交易数据
def request_post(url, sql, user, pwd):try:sql = sql.encode("utf-8")headers = {'Connection': 'keep-alive','Accept-Encoding': 'gzip, deflate, br'}result = requests.post(url, data=sql, auth=HTTPBasicAuth(user,pwd),headers=headers)text=result.content.decode()return textexcept Exception as e:print(e)## 判断查询是否成功
def check_return(result):datart = json.loads(result).get("code")if str(datart) == '0':chkrt = 'succ'else:chkrt = 'error' return chkrt## 将返回的 Json 转换为 DataFrame
def request_get_d(resInfo):load_data = json.loads(resInfo)data = load_data.get("data")df = pd.DataFrame(data)df.rename(columns={0:'tdate',1:'close'},inplace=True)return df
2.计算均线
不得不说,用别人的轮子就是方便。
if __name__ == '__main__':rt = request_post(tdurl,sql,username,password)scode = check_return(rt)if scode != 'error':df = request_get_d(rt)ema5 = pd.DataFrame.ewm(df['close'],span=5).mean() ema10 = pd.DataFrame.ewm(df['close'],span=10).mean()
3. 绘制图形
plt.title("EMA")plt.plot(ema5,'g',linewidth=1.0,label='EMA5')plt.plot(ema10,'r',linewidth=1.0,label='EMA10')plt.legend()plt.grid()plt.show()
看起来比上次计算 MA 均线简单多了,毕竟是站在别人的肩膀上嘛。

题外话
历史数据的均线基本不会变化,计算好以后可以直接写到 TDengine 里面,然后在 Grafana 中展示。
这部分的实现放在下个笔记。
1. 均线的周期
绘制均线必须要指定周期,通常使用的周期为5、10、20,为什么呢??
因为通常一周的交易日是5天,其他为5的倍数,那么这个周期是否能够准确趋势的变化呢?
有句话说的很好,技术分析总是在不断的自我验证中走向灭亡。
因此均线周期的选择并非一成不变的,通过修改周期,可能会获得不同的视角。
2. 均线的使用
仔细观察就会发现:均线相较于实际数据数据是滞后的,周期越长滞后越严重。MA 均线比 EMA 均线更加滞后,因为 EMA中 最近的数据具有较大的权重。
因此,均线只是对历史价格趋势的描述,而非预测。这点非常重要。也就是说,均线是用来确认趋势,对价格走势进行验证的。
相关文章:
[量化投资-学习笔记004]Python+TDengine从零开始搭建量化分析平台-EMA均线
在之前的文章中用 Python 直接计算的 MA 均线,但面对 EMA 我认怂了。 PythonTDengine从零开始搭建量化分析平台-MA均线的多种实现方式 高数是我们在大学唯一挂过的科。这次直接使用 Pandas 库的 DataFrame.ewm 函数,便捷又省事。 并且用 Pandas 直接对之…...
KaiwuDB 获山东省工信厅“信息化应用创新优秀解决方案”奖
10月23日,山东省工信厅正式公示《2023年山东省信息化应用创新典型应用案例及优秀解决方案名单》,面向全省、全国重点推荐山东省技术水平先进、应用示范效果突出、产业带动性强的信息化解决方案及应用实践,对于进一步激发山东省信息技术产业创…...
Python-常用的量化交易代码片段
算法交易正在彻底改变金融世界。通过基于预定义标准的自动化交易,交易者可以以闪电般的速度和比以往更精确的方式执行订单。如果您热衷于深入了解算法交易的世界,本指南提供了帮助您入门的基本代码片段。从获取股票数据到回溯测试策略,我们都能满足您的需求! 1. 使用 YFina…...
Netty优化-rpc
Netty优化-rpc 1.3 RPC 框架1)准备工作 1.3 RPC 框架 1)准备工作 这些代码可以认为是现成的,无需从头编写练习 为了简化起见,在原来聊天项目的基础上新增 Rpc 请求和响应消息 Data public abstract class Message implements …...
【Docker 内核详解】cgroups 资源限制(一):概念、作用、术语
cgroups 资源限制(一):概念、作用、术语 1.cgroups 是什么2.cgroups 的作用3.cgroups 术语表 当谈论 Docker 时,常常会聊到 Docker 的实现方式。很多开发者都知道,Docker 容器本质上是宿主机上的进程(容器所…...
MATLAB——一维小波的多层分解
%% 学习目标:一维小波的多层分解 clear all; close all; load noissin.mat; xnoissin; [C,L]wavedec(x,3,db4); % 3层分解,使用db4小波 [cd1,cd2,cd3]detcoef(C,L,[1,2,3]); % 使用detcoef函数获取细节系数 ca3appcoef(C,L,db4,3); …...
C++的拷贝构造函数
目录 拷贝构造函数一、为什么用拷贝构造二、拷贝构造函数1、概念2、特征1. 拷贝构造函数是构造函数的一个重载形式。2. 拷贝构造函数的参数3. 若未显式定义,编译器会生成默认的拷贝构造函数。4. 拷贝构造函数典型调用场景 拷贝构造函数 一、为什么用拷贝构造 日期…...
【手机端远程连接服务器】安装和配置cpolar+JuiceSSH:实现手机端远程连接服务器
文章目录 1. Linux安装cpolar2. 创建公网SSH连接地址3. JuiceSSH公网远程连接4. 固定连接SSH公网地址5. SSH固定地址连接测试 处于内网的虚拟机如何被外网访问呢?如何手机就能访问虚拟机呢? cpolarJuiceSSH 实现手机端远程连接Linux虚拟机(内网穿透,手机端连接Linux虚拟机) …...
Jupyter Notebook的使用
文章目录 Jupyter Notebook一、Jupyter Notebook是什么?二、使用步骤1.安装Miniconda2.安装启动**Jupyter Notebook**3.一些问题 三、Jupyter Notebook的操作1.更换解释器2.在指定的文件夹中打开3 运行的快捷键 四.报错解决1.画图的时候出现报错2.画图的时候空白3.p…...
vue 使用vue-office预览word、excel,pdf同理
在此,我只使用了docx和excel, pdf我直接使用的iframe进行的展示就不作赘述了 //docx文档预览组件 npm install vue-office/docx//excel文档预览组件 npm install vue-office/excel//pdf文档预览组件 npm install vue-office/pdf如果是vue2.6版本或以下还…...
【Spring Boot 源码学习】RedisAutoConfiguration 详解
Spring Boot 源码学习系列 RedisAutoConfiguration 详解 引言往期内容主要内容1. Spring Data Redis2. RedisAutoConfiguration2.1 加载自动配置组件2.2 过滤自动配置组件2.2.1 涉及注解2.2.2 redisTemplate 方法2.2.3 stringRedisTemplate 方法 总结 引言 上篇博文࿰…...
Linux中如何进行粘贴复制
因为CTRLC在Linux中具有特定的含义:终止当前操作 xshell提供了CTRLinsert(复制)/shiftinsert(粘贴) 上述快捷键在Windows中依旧支持,...
多输入多输出 | Matlab实现k-means-LSTM(k均值聚类结合长短期记忆神经网络)多输入多输出组合预测
多输入多输出 | Matlab实现k-means-LSTM(k均值聚类结合长短期记忆神经网络)多输入多输出组合预测 目录 多输入多输出 | Matlab实现k-means-LSTM(k均值聚类结合长短期记忆神经网络)多输入多输出组合预测预测效果基本描述程序设计参…...
学习笔记3——JVM基础知识
学习笔记系列开头惯例发布一些寻亲消息 链接:https://baobeihuijia.com/bbhj/contents/3/196593.html JVM(Write Once,Run Anywhere) 以下是一些学习时有用到的资料,只学习了JVM的基础知识,对JVM整体进…...
图像处理:图片二值化学习,以及代码中如何实现
目录 1、了解下图片二值化的含义 2、进行图像二值化处理的方法 3、如何选择合适的阈值进行二值化 4、实现图片二值化(代码) (1)是使用C和OpenCV库实现: (2)纯C代码实现,不要借…...
如果你点击RabbitMQ Service - start了,但http://localhost:15672/#/还是访问不了,那么请看这篇博客!
RabbitMQ 服务启动失败问题小结(Windows环境)_rabbitmq启动不了-CSDN博客...
Shell 脚本学习 day01
release node v1 初始版本 #定义备份目录#当前时间#检查备份目录是否存在,不存在需要创建# 查找并备份 .xxx 文件# 提取文件名(不包含路径部分)# 构建备份文件名# 将查出来的.xxx文件拷贝到备份目录#!/bin/bash # context 备份根目录下所有.…...
esp32 rust linux
官方文档:https://esp-rs.github.io/book/introduction.html 安装 rust curl --proto https --tlsv1.2 -sSf https://sh.rustup.rs | sh 工具 risc: rustup toolchain install nightly --component rust-src # nightly 支持 riscv或使用安装工具同时…...
一文了解Elasticsearch
数据分类 数据按数据结构分类主要有三种:结构化数据、半结构化数据和非结构化数据。 结构化数据 结构化数据具有明确定义数据模型和格式的数据类型。 特点: 数据具有固定的结构和模式。 数据项明确定义数据类型和长度。 适合用于数据查询、过滤和分…...
一篇文章认识【性能测试】
一、 性能测试术语解释 1. 响应时间 响应时间即从应用系统发出请求开始,到客户端接收到最后一个字节数据为止所消耗的时间。响应时间按软件的特点再可以细分,如对于一个 C/S 软件的响应时间可以细分为网络传输时间、应用服务器处理时间、数据库服务器…...
css实现圆环展示百分比,根据值动态展示所占比例
代码如下 <view class""><view class"circle-chart"><view v-if"!!num" class"pie-item" :style"{background: conic-gradient(var(--one-color) 0%,#E9E6F1 ${num}%),}"></view><view v-else …...
UDP(Echoserver)
网络命令 Ping 命令 检测网络是否连通 使用方法: ping -c 次数 网址ping -c 3 www.baidu.comnetstat 命令 netstat 是一个用来查看网络状态的重要工具. 语法:netstat [选项] 功能:查看网络状态 常用选项: n 拒绝显示别名&#…...
【大模型RAG】Docker 一键部署 Milvus 完整攻略
本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装;只需暴露 19530(gRPC)与 9091(HTTP/WebUI)两个端口,即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...
使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装
以下是基于 vant-ui(适配 Vue2 版本 )实现截图中照片上传预览、删除功能,并封装成可复用组件的完整代码,包含样式和逻辑实现,可直接在 Vue2 项目中使用: 1. 封装的图片上传组件 ImageUploader.vue <te…...
Keil 中设置 STM32 Flash 和 RAM 地址详解
文章目录 Keil 中设置 STM32 Flash 和 RAM 地址详解一、Flash 和 RAM 配置界面(Target 选项卡)1. IROM1(用于配置 Flash)2. IRAM1(用于配置 RAM)二、链接器设置界面(Linker 选项卡)1. 勾选“Use Memory Layout from Target Dialog”2. 查看链接器参数(如果没有勾选上面…...
ServerTrust 并非唯一
NSURLAuthenticationMethodServerTrust 只是 authenticationMethod 的冰山一角 要理解 NSURLAuthenticationMethodServerTrust, 首先要明白它只是 authenticationMethod 的选项之一, 并非唯一 1 先厘清概念 点说明authenticationMethodURLAuthenticationChallenge.protectionS…...
pikachu靶场通关笔记22-1 SQL注入05-1-insert注入(报错法)
目录 一、SQL注入 二、insert注入 三、报错型注入 四、updatexml函数 五、源码审计 六、insert渗透实战 1、渗透准备 2、获取数据库名database 3、获取表名table 4、获取列名column 5、获取字段 本系列为通过《pikachu靶场通关笔记》的SQL注入关卡(共10关࿰…...
项目部署到Linux上时遇到的错误(Redis,MySQL,无法正确连接,地址占用问题)
Redis无法正确连接 在运行jar包时出现了这样的错误 查询得知问题核心在于Redis连接失败,具体原因是客户端发送了密码认证请求,但Redis服务器未设置密码 1.为Redis设置密码(匹配客户端配置) 步骤: 1).修…...
初学 pytest 记录
安装 pip install pytest用例可以是函数也可以是类中的方法 def test_func():print()class TestAdd: # def __init__(self): 在 pytest 中不可以使用__init__方法 # self.cc 12345 pytest.mark.api def test_str(self):res add(1, 2)assert res 12def test_int(self):r…...
处理vxe-table 表尾数据是单独一个接口,表格tableData数据更新后,需要点击两下,表尾才是正确的
修改bug思路: 分别把 tabledata 和 表尾相关数据 console.log() 发现 更新数据先后顺序不对 settimeout延迟查询表格接口 ——测试可行 升级↑:async await 等接口返回后再开始下一个接口查询 ________________________________________________________…...
