[量化投资-学习笔记004]Python+TDengine从零开始搭建量化分析平台-EMA均线
在之前的文章中用 Python 直接计算的 MA 均线,但面对 EMA 我认怂了。
Python+TDengine从零开始搭建量化分析平台-MA均线的多种实现方式
高数是我们在大学唯一挂过的科。这次直接使用 Pandas 库的 DataFrame.ewm
函数,便捷又省事。
并且用 Pandas 直接对之前 MA 均线进行改写。
我一直同意:I would rather be vaguely right than precisely wrong.
EMA 公式:
EMA(t)=平滑常数*当前价格+(1-平滑常数)*EMA(t-1)
目录
- 1. 获取数据
- 2.计算均线
- 3. 绘制图形
- 题外话
- 1. 均线的周期
- 2. 均线的使用
1. 获取数据
还是使用 Restful 方式从 TDengine 查询数据,并转换成 DataFrame
格式。想看获取数据完整代码的同学,可以翻我之前的笔记。
##SQL
st = '2022-08-01'
et = '2022-10-01'
sql = 'select last(tdate),last(close) from trade_data_a.tdata where fcode="000001" and tdate>="'+st+'" and tdate<="'+et+'"' +' interval(1d) '## 通过Restful 从 TDengine 获取交易数据
def request_post(url, sql, user, pwd):try:sql = sql.encode("utf-8")headers = {'Connection': 'keep-alive','Accept-Encoding': 'gzip, deflate, br'}result = requests.post(url, data=sql, auth=HTTPBasicAuth(user,pwd),headers=headers)text=result.content.decode()return textexcept Exception as e:print(e)## 判断查询是否成功
def check_return(result):datart = json.loads(result).get("code")if str(datart) == '0':chkrt = 'succ'else:chkrt = 'error' return chkrt## 将返回的 Json 转换为 DataFrame
def request_get_d(resInfo):load_data = json.loads(resInfo)data = load_data.get("data")df = pd.DataFrame(data)df.rename(columns={0:'tdate',1:'close'},inplace=True)return df
2.计算均线
不得不说,用别人的轮子就是方便。
if __name__ == '__main__':rt = request_post(tdurl,sql,username,password)scode = check_return(rt)if scode != 'error':df = request_get_d(rt)ema5 = pd.DataFrame.ewm(df['close'],span=5).mean() ema10 = pd.DataFrame.ewm(df['close'],span=10).mean()
3. 绘制图形
plt.title("EMA")plt.plot(ema5,'g',linewidth=1.0,label='EMA5')plt.plot(ema10,'r',linewidth=1.0,label='EMA10')plt.legend()plt.grid()plt.show()
看起来比上次计算 MA 均线简单多了,毕竟是站在别人的肩膀上嘛。
题外话
历史数据的均线基本不会变化,计算好以后可以直接写到 TDengine 里面,然后在 Grafana 中展示。
这部分的实现放在下个笔记。
1. 均线的周期
绘制均线必须要指定周期,通常使用的周期为5、10、20,为什么呢??
因为通常一周的交易日是5天,其他为5的倍数,那么这个周期是否能够准确趋势的变化呢?
有句话说的很好,技术分析总是在不断的自我验证中走向灭亡。
因此均线周期的选择并非一成不变的,通过修改周期,可能会获得不同的视角。
2. 均线的使用
仔细观察就会发现:均线相较于实际数据数据是滞后的,周期越长滞后越严重。MA 均线比 EMA 均线更加滞后,因为 EMA中 最近的数据具有较大的权重。
因此,均线只是对历史价格趋势的描述,而非预测。这点非常重要。也就是说,均线是用来确认趋势,对价格走势进行验证的。
相关文章:

[量化投资-学习笔记004]Python+TDengine从零开始搭建量化分析平台-EMA均线
在之前的文章中用 Python 直接计算的 MA 均线,但面对 EMA 我认怂了。 PythonTDengine从零开始搭建量化分析平台-MA均线的多种实现方式 高数是我们在大学唯一挂过的科。这次直接使用 Pandas 库的 DataFrame.ewm 函数,便捷又省事。 并且用 Pandas 直接对之…...

KaiwuDB 获山东省工信厅“信息化应用创新优秀解决方案”奖
10月23日,山东省工信厅正式公示《2023年山东省信息化应用创新典型应用案例及优秀解决方案名单》,面向全省、全国重点推荐山东省技术水平先进、应用示范效果突出、产业带动性强的信息化解决方案及应用实践,对于进一步激发山东省信息技术产业创…...

Python-常用的量化交易代码片段
算法交易正在彻底改变金融世界。通过基于预定义标准的自动化交易,交易者可以以闪电般的速度和比以往更精确的方式执行订单。如果您热衷于深入了解算法交易的世界,本指南提供了帮助您入门的基本代码片段。从获取股票数据到回溯测试策略,我们都能满足您的需求! 1. 使用 YFina…...
Netty优化-rpc
Netty优化-rpc 1.3 RPC 框架1)准备工作 1.3 RPC 框架 1)准备工作 这些代码可以认为是现成的,无需从头编写练习 为了简化起见,在原来聊天项目的基础上新增 Rpc 请求和响应消息 Data public abstract class Message implements …...
【Docker 内核详解】cgroups 资源限制(一):概念、作用、术语
cgroups 资源限制(一):概念、作用、术语 1.cgroups 是什么2.cgroups 的作用3.cgroups 术语表 当谈论 Docker 时,常常会聊到 Docker 的实现方式。很多开发者都知道,Docker 容器本质上是宿主机上的进程(容器所…...

MATLAB——一维小波的多层分解
%% 学习目标:一维小波的多层分解 clear all; close all; load noissin.mat; xnoissin; [C,L]wavedec(x,3,db4); % 3层分解,使用db4小波 [cd1,cd2,cd3]detcoef(C,L,[1,2,3]); % 使用detcoef函数获取细节系数 ca3appcoef(C,L,db4,3); …...

C++的拷贝构造函数
目录 拷贝构造函数一、为什么用拷贝构造二、拷贝构造函数1、概念2、特征1. 拷贝构造函数是构造函数的一个重载形式。2. 拷贝构造函数的参数3. 若未显式定义,编译器会生成默认的拷贝构造函数。4. 拷贝构造函数典型调用场景 拷贝构造函数 一、为什么用拷贝构造 日期…...

【手机端远程连接服务器】安装和配置cpolar+JuiceSSH:实现手机端远程连接服务器
文章目录 1. Linux安装cpolar2. 创建公网SSH连接地址3. JuiceSSH公网远程连接4. 固定连接SSH公网地址5. SSH固定地址连接测试 处于内网的虚拟机如何被外网访问呢?如何手机就能访问虚拟机呢? cpolarJuiceSSH 实现手机端远程连接Linux虚拟机(内网穿透,手机端连接Linux虚拟机) …...

Jupyter Notebook的使用
文章目录 Jupyter Notebook一、Jupyter Notebook是什么?二、使用步骤1.安装Miniconda2.安装启动**Jupyter Notebook**3.一些问题 三、Jupyter Notebook的操作1.更换解释器2.在指定的文件夹中打开3 运行的快捷键 四.报错解决1.画图的时候出现报错2.画图的时候空白3.p…...
vue 使用vue-office预览word、excel,pdf同理
在此,我只使用了docx和excel, pdf我直接使用的iframe进行的展示就不作赘述了 //docx文档预览组件 npm install vue-office/docx//excel文档预览组件 npm install vue-office/excel//pdf文档预览组件 npm install vue-office/pdf如果是vue2.6版本或以下还…...

【Spring Boot 源码学习】RedisAutoConfiguration 详解
Spring Boot 源码学习系列 RedisAutoConfiguration 详解 引言往期内容主要内容1. Spring Data Redis2. RedisAutoConfiguration2.1 加载自动配置组件2.2 过滤自动配置组件2.2.1 涉及注解2.2.2 redisTemplate 方法2.2.3 stringRedisTemplate 方法 总结 引言 上篇博文࿰…...
Linux中如何进行粘贴复制
因为CTRLC在Linux中具有特定的含义:终止当前操作 xshell提供了CTRLinsert(复制)/shiftinsert(粘贴) 上述快捷键在Windows中依旧支持,...

多输入多输出 | Matlab实现k-means-LSTM(k均值聚类结合长短期记忆神经网络)多输入多输出组合预测
多输入多输出 | Matlab实现k-means-LSTM(k均值聚类结合长短期记忆神经网络)多输入多输出组合预测 目录 多输入多输出 | Matlab实现k-means-LSTM(k均值聚类结合长短期记忆神经网络)多输入多输出组合预测预测效果基本描述程序设计参…...

学习笔记3——JVM基础知识
学习笔记系列开头惯例发布一些寻亲消息 链接:https://baobeihuijia.com/bbhj/contents/3/196593.html JVM(Write Once,Run Anywhere) 以下是一些学习时有用到的资料,只学习了JVM的基础知识,对JVM整体进…...
图像处理:图片二值化学习,以及代码中如何实现
目录 1、了解下图片二值化的含义 2、进行图像二值化处理的方法 3、如何选择合适的阈值进行二值化 4、实现图片二值化(代码) (1)是使用C和OpenCV库实现: (2)纯C代码实现,不要借…...
如果你点击RabbitMQ Service - start了,但http://localhost:15672/#/还是访问不了,那么请看这篇博客!
RabbitMQ 服务启动失败问题小结(Windows环境)_rabbitmq启动不了-CSDN博客...
Shell 脚本学习 day01
release node v1 初始版本 #定义备份目录#当前时间#检查备份目录是否存在,不存在需要创建# 查找并备份 .xxx 文件# 提取文件名(不包含路径部分)# 构建备份文件名# 将查出来的.xxx文件拷贝到备份目录#!/bin/bash # context 备份根目录下所有.…...
esp32 rust linux
官方文档:https://esp-rs.github.io/book/introduction.html 安装 rust curl --proto https --tlsv1.2 -sSf https://sh.rustup.rs | sh 工具 risc: rustup toolchain install nightly --component rust-src # nightly 支持 riscv或使用安装工具同时…...

一文了解Elasticsearch
数据分类 数据按数据结构分类主要有三种:结构化数据、半结构化数据和非结构化数据。 结构化数据 结构化数据具有明确定义数据模型和格式的数据类型。 特点: 数据具有固定的结构和模式。 数据项明确定义数据类型和长度。 适合用于数据查询、过滤和分…...

一篇文章认识【性能测试】
一、 性能测试术语解释 1. 响应时间 响应时间即从应用系统发出请求开始,到客户端接收到最后一个字节数据为止所消耗的时间。响应时间按软件的特点再可以细分,如对于一个 C/S 软件的响应时间可以细分为网络传输时间、应用服务器处理时间、数据库服务器…...
Java 8 Stream API 入门到实践详解
一、告别 for 循环! 传统痛点: Java 8 之前,集合操作离不开冗长的 for 循环和匿名类。例如,过滤列表中的偶数: List<Integer> list Arrays.asList(1, 2, 3, 4, 5); List<Integer> evens new ArrayList…...

MODBUS TCP转CANopen 技术赋能高效协同作业
在现代工业自动化领域,MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步,这两种通讯协议也正在被逐步融合,形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...
什么是EULA和DPA
文章目录 EULA(End User License Agreement)DPA(Data Protection Agreement)一、定义与背景二、核心内容三、法律效力与责任四、实际应用与意义 EULA(End User License Agreement) 定义: EULA即…...
拉力测试cuda pytorch 把 4070显卡拉满
import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试,通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小,增大可提高计算复杂度duration: 测试持续时间(秒&…...

涂鸦T5AI手搓语音、emoji、otto机器人从入门到实战
“🤖手搓TuyaAI语音指令 😍秒变表情包大师,让萌系Otto机器人🔥玩出智能新花样!开整!” 🤖 Otto机器人 → 直接点明主体 手搓TuyaAI语音 → 强调 自主编程/自定义 语音控制(TuyaAI…...

pikachu靶场通关笔记22-1 SQL注入05-1-insert注入(报错法)
目录 一、SQL注入 二、insert注入 三、报错型注入 四、updatexml函数 五、源码审计 六、insert渗透实战 1、渗透准备 2、获取数据库名database 3、获取表名table 4、获取列名column 5、获取字段 本系列为通过《pikachu靶场通关笔记》的SQL注入关卡(共10关࿰…...

Android 之 kotlin 语言学习笔记三(Kotlin-Java 互操作)
参考官方文档:https://developer.android.google.cn/kotlin/interop?hlzh-cn 一、Java(供 Kotlin 使用) 1、不得使用硬关键字 不要使用 Kotlin 的任何硬关键字作为方法的名称 或字段。允许使用 Kotlin 的软关键字、修饰符关键字和特殊标识…...
AspectJ 在 Android 中的完整使用指南
一、环境配置(Gradle 7.0 适配) 1. 项目级 build.gradle // 注意:沪江插件已停更,推荐官方兼容方案 buildscript {dependencies {classpath org.aspectj:aspectjtools:1.9.9.1 // AspectJ 工具} } 2. 模块级 build.gradle plu…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比
在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...

SiFli 52把Imagie图片,Font字体资源放在指定位置,编译成指定img.bin和font.bin的问题
分区配置 (ptab.json) img 属性介绍: img 属性指定分区存放的 image 名称,指定的 image 名称必须是当前工程生成的 binary 。 如果 binary 有多个文件,则以 proj_name:binary_name 格式指定文件名, proj_name 为工程 名&…...