当前位置: 首页 > news >正文

[量化投资-学习笔记004]Python+TDengine从零开始搭建量化分析平台-EMA均线

在之前的文章中用 Python 直接计算的 MA 均线,但面对 EMA 我认怂了。
Python+TDengine从零开始搭建量化分析平台-MA均线的多种实现方式

高数是我们在大学唯一挂过的科。这次直接使用 Pandas 库的 DataFrame.ewm 函数,便捷又省事。
并且用 Pandas 直接对之前 MA 均线进行改写。

我一直同意:I would rather be vaguely right than precisely wrong.

EMA 公式:

EMA(t)=平滑常数*当前价格+(1-平滑常数)*EMA(t-1)

目录

    • 1. 获取数据
    • 2.计算均线
    • 3. 绘制图形
    • 题外话
      • 1. 均线的周期
      • 2. 均线的使用

1. 获取数据

还是使用 Restful 方式从 TDengine 查询数据,并转换成 DataFrame 格式。想看获取数据完整代码的同学,可以翻我之前的笔记。

##SQL
st = '2022-08-01'
et = '2022-10-01'
sql = 'select last(tdate),last(close) from trade_data_a.tdata where fcode="000001" and tdate>="'+st+'" and tdate<="'+et+'"' +' interval(1d) '## 通过Restful 从 TDengine 获取交易数据
def request_post(url, sql, user, pwd):try:sql = sql.encode("utf-8")headers = {'Connection': 'keep-alive','Accept-Encoding': 'gzip, deflate, br'}result = requests.post(url, data=sql, auth=HTTPBasicAuth(user,pwd),headers=headers)text=result.content.decode()return textexcept Exception as e:print(e)## 判断查询是否成功
def check_return(result):datart = json.loads(result).get("code")if  str(datart) == '0':chkrt = 'succ'else:chkrt = 'error' return chkrt## 将返回的 Json 转换为 DataFrame
def request_get_d(resInfo):load_data = json.loads(resInfo)data = load_data.get("data")df = pd.DataFrame(data)df.rename(columns={0:'tdate',1:'close'},inplace=True)return df

2.计算均线

不得不说,用别人的轮子就是方便。

if __name__ == '__main__':rt = request_post(tdurl,sql,username,password)scode = check_return(rt)if scode != 'error':df = request_get_d(rt)ema5 = pd.DataFrame.ewm(df['close'],span=5).mean() ema10 = pd.DataFrame.ewm(df['close'],span=10).mean() 

3. 绘制图形

        plt.title("EMA")plt.plot(ema5,'g',linewidth=1.0,label='EMA5')plt.plot(ema10,'r',linewidth=1.0,label='EMA10')plt.legend()plt.grid()plt.show()

看起来比上次计算 MA 均线简单多了,毕竟是站在别人的肩膀上嘛。
在这里插入图片描述

题外话

历史数据的均线基本不会变化,计算好以后可以直接写到 TDengine 里面,然后在 Grafana 中展示。

这部分的实现放在下个笔记。

1. 均线的周期

绘制均线必须要指定周期,通常使用的周期为5、10、20,为什么呢??

因为通常一周的交易日是5天,其他为5的倍数,那么这个周期是否能够准确趋势的变化呢?

有句话说的很好,技术分析总是在不断的自我验证中走向灭亡。

因此均线周期的选择并非一成不变的,通过修改周期,可能会获得不同的视角。

2. 均线的使用

仔细观察就会发现:均线相较于实际数据数据是滞后的,周期越长滞后越严重。MA 均线比 EMA 均线更加滞后,因为 EMA中 最近的数据具有较大的权重。

因此,均线只是对历史价格趋势的描述,而非预测。这点非常重要。也就是说,均线是用来确认趋势,对价格走势进行验证的。

相关文章:

[量化投资-学习笔记004]Python+TDengine从零开始搭建量化分析平台-EMA均线

在之前的文章中用 Python 直接计算的 MA 均线&#xff0c;但面对 EMA 我认怂了。 PythonTDengine从零开始搭建量化分析平台-MA均线的多种实现方式 高数是我们在大学唯一挂过的科。这次直接使用 Pandas 库的 DataFrame.ewm 函数&#xff0c;便捷又省事。 并且用 Pandas 直接对之…...

KaiwuDB 获山东省工信厅“信息化应用创新优秀解决方案”奖

10月23日&#xff0c;山东省工信厅正式公示《2023年山东省信息化应用创新典型应用案例及优秀解决方案名单》&#xff0c;面向全省、全国重点推荐山东省技术水平先进、应用示范效果突出、产业带动性强的信息化解决方案及应用实践&#xff0c;对于进一步激发山东省信息技术产业创…...

Python-常用的量化交易代码片段

算法交易正在彻底改变金融世界。通过基于预定义标准的自动化交易,交易者可以以闪电般的速度和比以往更精确的方式执行订单。如果您热衷于深入了解算法交易的世界,本指南提供了帮助您入门的基本代码片段。从获取股票数据到回溯测试策略,我们都能满足您的需求! 1. 使用 YFina…...

Netty优化-rpc

Netty优化-rpc 1.3 RPC 框架1&#xff09;准备工作 1.3 RPC 框架 1&#xff09;准备工作 这些代码可以认为是现成的&#xff0c;无需从头编写练习 为了简化起见&#xff0c;在原来聊天项目的基础上新增 Rpc 请求和响应消息 Data public abstract class Message implements …...

【Docker 内核详解】cgroups 资源限制(一):概念、作用、术语

cgroups 资源限制&#xff08;一&#xff09;&#xff1a;概念、作用、术语 1.cgroups 是什么2.cgroups 的作用3.cgroups 术语表 当谈论 Docker 时&#xff0c;常常会聊到 Docker 的实现方式。很多开发者都知道&#xff0c;Docker 容器本质上是宿主机上的进程&#xff08;容器所…...

MATLAB——一维小波的多层分解

%% 学习目标&#xff1a;一维小波的多层分解 clear all; close all; load noissin.mat; xnoissin; [C,L]wavedec(x,3,db4); % 3层分解&#xff0c;使用db4小波 [cd1,cd2,cd3]detcoef(C,L,[1,2,3]); % 使用detcoef函数获取细节系数 ca3appcoef(C,L,db4,3); …...

C++的拷贝构造函数

目录 拷贝构造函数一、为什么用拷贝构造二、拷贝构造函数1、概念2、特征1. 拷贝构造函数是构造函数的一个重载形式。2. 拷贝构造函数的参数3. 若未显式定义&#xff0c;编译器会生成默认的拷贝构造函数。4. 拷贝构造函数典型调用场景 拷贝构造函数 一、为什么用拷贝构造 日期…...

【手机端远程连接服务器】安装和配置cpolar+JuiceSSH:实现手机端远程连接服务器

文章目录 1. Linux安装cpolar2. 创建公网SSH连接地址3. JuiceSSH公网远程连接4. 固定连接SSH公网地址5. SSH固定地址连接测试 处于内网的虚拟机如何被外网访问呢?如何手机就能访问虚拟机呢? cpolarJuiceSSH 实现手机端远程连接Linux虚拟机(内网穿透,手机端连接Linux虚拟机) …...

Jupyter Notebook的使用

文章目录 Jupyter Notebook一、Jupyter Notebook是什么&#xff1f;二、使用步骤1.安装Miniconda2.安装启动**Jupyter Notebook**3.一些问题 三、Jupyter Notebook的操作1.更换解释器2.在指定的文件夹中打开3 运行的快捷键 四.报错解决1.画图的时候出现报错2.画图的时候空白3.p…...

vue 使用vue-office预览word、excel,pdf同理

在此&#xff0c;我只使用了docx和excel&#xff0c; pdf我直接使用的iframe进行的展示就不作赘述了 //docx文档预览组件 npm install vue-office/docx//excel文档预览组件 npm install vue-office/excel//pdf文档预览组件 npm install vue-office/pdf如果是vue2.6版本或以下还…...

【Spring Boot 源码学习】RedisAutoConfiguration 详解

Spring Boot 源码学习系列 RedisAutoConfiguration 详解 引言往期内容主要内容1. Spring Data Redis2. RedisAutoConfiguration2.1 加载自动配置组件2.2 过滤自动配置组件2.2.1 涉及注解2.2.2 redisTemplate 方法2.2.3 stringRedisTemplate 方法 总结 引言 上篇博文&#xff0…...

Linux中如何进行粘贴复制

因为CTRLC在Linux中具有特定的含义:终止当前操作 xshell提供了CTRLinsert(复制)/shiftinsert(粘贴) 上述快捷键在Windows中依旧支持,...

多输入多输出 | Matlab实现k-means-LSTM(k均值聚类结合长短期记忆神经网络)多输入多输出组合预测

多输入多输出 | Matlab实现k-means-LSTM&#xff08;k均值聚类结合长短期记忆神经网络&#xff09;多输入多输出组合预测 目录 多输入多输出 | Matlab实现k-means-LSTM&#xff08;k均值聚类结合长短期记忆神经网络&#xff09;多输入多输出组合预测预测效果基本描述程序设计参…...

学习笔记3——JVM基础知识

学习笔记系列开头惯例发布一些寻亲消息 链接&#xff1a;https://baobeihuijia.com/bbhj/contents/3/196593.html JVM&#xff08;Write Once&#xff0c;Run Anywhere&#xff09; 以下是一些学习时有用到的资料&#xff0c;只学习了JVM的基础知识&#xff0c;对JVM整体进…...

图像处理:图片二值化学习,以及代码中如何实现

目录 1、了解下图片二值化的含义 2、进行图像二值化处理的方法 3、如何选择合适的阈值进行二值化 4、实现图片二值化&#xff08;代码&#xff09; &#xff08;1&#xff09;是使用C和OpenCV库实现&#xff1a; &#xff08;2&#xff09;纯C代码实现&#xff0c;不要借…...

如果你点击RabbitMQ Service - start了,但http://localhost:15672/#/还是访问不了,那么请看这篇博客!

RabbitMQ 服务启动失败问题小结&#xff08;Windows环境&#xff09;_rabbitmq启动不了-CSDN博客...

Shell 脚本学习 day01

release node v1 初始版本 #定义备份目录#当前时间#检查备份目录是否存在&#xff0c;不存在需要创建# 查找并备份 .xxx 文件# 提取文件名&#xff08;不包含路径部分&#xff09;# 构建备份文件名# 将查出来的.xxx文件拷贝到备份目录#!/bin/bash # context 备份根目录下所有.…...

esp32 rust linux

官方文档&#xff1a;https://esp-rs.github.io/book/introduction.html 安装 rust curl --proto https --tlsv1.2 -sSf https://sh.rustup.rs | sh 工具 risc&#xff1a; rustup toolchain install nightly --component rust-src # nightly 支持 riscv或使用安装工具同时…...

一文了解Elasticsearch

数据分类 数据按数据结构分类主要有三种&#xff1a;结构化数据、半结构化数据和非结构化数据。 结构化数据 结构化数据具有明确定义数据模型和格式的数据类型。 特点&#xff1a; 数据具有固定的结构和模式。 数据项明确定义数据类型和长度。 适合用于数据查询、过滤和分…...

一篇文章认识【性能测试】

一、 性能测试术语解释 1. 响应时间 响应时间即从应用系统发出请求开始&#xff0c;到客户端接收到最后一个字节数据为止所消耗的时间。响应时间按软件的特点再可以细分&#xff0c;如对于一个 C/S 软件的响应时间可以细分为网络传输时间、应用服务器处理时间、数据库服务器…...

基于算法竞赛的c++编程(28)结构体的进阶应用

结构体的嵌套与复杂数据组织 在C中&#xff0c;结构体可以嵌套使用&#xff0c;形成更复杂的数据结构。例如&#xff0c;可以通过嵌套结构体描述多层级数据关系&#xff1a; struct Address {string city;string street;int zipCode; };struct Employee {string name;int id;…...

OpenLayers 可视化之热力图

注&#xff1a;当前使用的是 ol 5.3.0 版本&#xff0c;天地图使用的key请到天地图官网申请&#xff0c;并替换为自己的key 热力图&#xff08;Heatmap&#xff09;又叫热点图&#xff0c;是一种通过特殊高亮显示事物密度分布、变化趋势的数据可视化技术。采用颜色的深浅来显示…...

TDengine 快速体验(Docker 镜像方式)

简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能&#xff0c;本节首先介绍如何通过 Docker 快速体验 TDengine&#xff0c;然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker&#xff0c;请使用 安装包的方式快…...

日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする

日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする 1、前言(1)情况说明(2)工程师的信仰2、知识点(1) にする1,接续:名词+にする2,接续:疑问词+にする3,(A)は(B)にする。(2)復習:(1)复习句子(2)ために & ように(3)そう(4)にする3、…...

【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)

骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术&#xff0c;它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton)&#xff1a;由层级结构的骨头组成&#xff0c;类似于人体骨骼蒙皮 (Mesh Skinning)&#xff1a;将模型网格顶点绑定到骨骼上&#xff0c;使骨骼移动…...

优选算法第十二讲:队列 + 宽搜 优先级队列

优选算法第十二讲&#xff1a;队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...

今日学习:Spring线程池|并发修改异常|链路丢失|登录续期|VIP过期策略|数值类缓存

文章目录 优雅版线程池ThreadPoolTaskExecutor和ThreadPoolTaskExecutor的装饰器并发修改异常并发修改异常简介实现机制设计原因及意义 使用线程池造成的链路丢失问题线程池导致的链路丢失问题发生原因 常见解决方法更好的解决方法设计精妙之处 登录续期登录续期常见实现方式特…...

python报错No module named ‘tensorflow.keras‘

是由于不同版本的tensorflow下的keras所在的路径不同&#xff0c;结合所安装的tensorflow的目录结构修改from语句即可。 原语句&#xff1a; from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后&#xff1a; from tensorflow.python.keras.lay…...

JAVA后端开发——多租户

数据隔离是多租户系统中的核心概念&#xff0c;确保一个租户&#xff08;在这个系统中可能是一个公司或一个独立的客户&#xff09;的数据对其他租户是不可见的。在 RuoYi 框架&#xff08;您当前项目所使用的基础框架&#xff09;中&#xff0c;这通常是通过在数据表中增加一个…...

【网络安全】开源系统getshell漏洞挖掘

审计过程&#xff1a; 在入口文件admin/index.php中&#xff1a; 用户可以通过m,c,a等参数控制加载的文件和方法&#xff0c;在app/system/entrance.php中存在重点代码&#xff1a; 当M_TYPE system并且M_MODULE include时&#xff0c;会设置常量PATH_OWN_FILE为PATH_APP.M_T…...