当前位置: 首页 > news >正文

分类预测 | Matlab实现KOA-CNN-LSTM-selfAttention多特征分类预测(自注意力机制)

分类预测 | Matlab实现KOA-CNN-LSTM-selfAttention多特征分类预测(自注意力机制)

目录

    • 分类预测 | Matlab实现KOA-CNN-LSTM-selfAttention多特征分类预测(自注意力机制)
      • 分类效果
      • 基本描述
      • 程序设计
      • 参考资料

分类效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

基本描述

1.Matlab实现KOA-CNN-LSTM-selfAttention开普勒算法优化卷积长短期记忆神经网络融合自注意力多特征分类预测,多特征输入模型,运行环境Matlab2023b及以上;
2.基于开普勒算法(KOA)优化卷积长短期记忆神经网络(CNN-LSTM)结合自注意力机制(selfAttention)分类预测。2023年新算法KOA,MATLAB程序,多行变量特征输入,优化了学习率、卷积核大小及隐藏层单元数等。
3.多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。程序语言为matlab,程序可出分类效果图,迭代图,混淆矩阵图.
4.data为数据集,输入12个特征,分四类;main为主程序,其余为函数文件,无需运行。
5.输出指标包括优化参数、精确度、召回率、精确率、F1分数。

程序设计

  • 完整程序和数据获取方式,私信博主回复Matlab实现KOA-CNN-LSTM-selfAttention多特征分类预测(自注意力机制)
[Order] = sort(PL_Fit);  %% 对当前种群中的解的适应度值进行排序%% 函数评估t时的最差适应度值worstFitness = Order(SearchAgents_no);                  %% Eq.(11)M = M0 * (exp(-lambda * (t / Tmax)));                   %% Eq.(12)%% 计算表示太阳与第i个解之间的欧几里得距离Rfor i = 1:SearchAgents_noR(i) = 0;for j = 1:dimR(i) = R(i) + (Sun_Pos(j) - Positions(i, j))^2;   %% Eq.(7)endR(i) = sqrt(R(i));end%% 太阳和对象i在时间t的质量计算如下:for i = 1:SearchAgents_nosum = 0;for k = 1:SearchAgents_nosum = sum + (PL_Fit(k) - worstFitness);endMS(i) = rand * (Sun_Score - worstFitness) / (sum);   %% Eq.(8)m(i) = (PL_Fit(i) - worstFitness) / (sum);           %% Eq.(9)end%%2步:定义引力(F)% 计算太阳和第i个行星的引力,根据普遍的引力定律:for i = 1:SearchAgents_noRnorm(i) = (R(i) - min(R)) / (max(R) - min(R));      %% 归一化的R(Eq.(24)MSnorm(i) = (MS(i) - min(MS)) / (max(MS) - min(MS)); %% 归一化的MSMnorm(i) = (m(i) - min(m)) / (max(m) - min(m));      %% 归一化的mFg(i) = orbital(i) * M * ((MSnorm(i) * Mnorm(i)) / (Rnorm(i) * Rnorm(i) + eps)) + (rand); %% Eq.(6)end
% a1表示第i个解在时间t的椭圆轨道的半长轴,
for i = 1:SearchAgents_noa1(i) = rand * (T(i)^2 * (M * (MS(i) + m(i)) / (4 * pi * pi)))^(1/3); %% Eq.(23)
endfor i = 1:SearchAgents_no
% a2是逐渐从-1-2的循环控制参数
a2 = -1 - 1 * (rem(t, Tmax / Tc) / (Tmax / Tc)); %% Eq.(29)% ξ是从1-2的线性减少因子
n = (a2 - 1) * rand + 1;    %% Eq.(28)
a = randi(SearchAgents_no); %% 随机选择的解的索引
b = randi(SearchAgents_no); %% 随机选择的解的索引
rd = rand(1, dim);          %% 按照正态分布生成的向量
r = rand;                   %% r1是[0,1]范围内的随机数%% 随机分配的二进制向量
U1 = rd < r;                %% Eq.(21)
O_P = Positions(i, :);      %% 存储第i个解的当前位置%%6步:更新与太阳的距离(第345在后面)
if rand < rand% h是一个自适应因子,用于控制时间t时太阳与当前行星之间的距离h = (1 / (exp(n * randn))); %% Eq.(27)% 基于三个解的平均向量:当前解、迄今为止的最优解和随机选择的解Xm = (Positions(b, :) + Sun_Pos + Positions(i, :)) / 3.0;Positions(i, :) = Positions(i, :) .* U1 + (Xm + h .* (Xm - Positions(a, :))) .* (1 - U1); %% Eq.(26)
else

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

相关文章:

分类预测 | Matlab实现KOA-CNN-LSTM-selfAttention多特征分类预测(自注意力机制)

分类预测 | Matlab实现KOA-CNN-LSTM-selfAttention多特征分类预测&#xff08;自注意力机制&#xff09; 目录 分类预测 | Matlab实现KOA-CNN-LSTM-selfAttention多特征分类预测&#xff08;自注意力机制&#xff09;分类效果基本描述程序设计参考资料 分类效果 基本描述 1.Mat…...

博客系统-项目测试

自动化博客项目 用户注册登录验证效验个人博客列表页博客数量不为 0 博客系统主页写博客 我的博客列表页效验 刚发布的博客的标题和时间查看 文章详情页删除文章效验第一篇博客 不是 "自动化测试" 注销退出到登录页面,用户名密码为空 用户注册 Order(1)Parameterized…...

Inspeckage,动态分析安卓 APP 的 Xposed 模块

前提 我在不久前写过《 APP 接口拦截与参数破解》的博文&#xff1b;最近爬取APP数据时又用到了相关技术&#xff0c;故在此详细描述一下 Inspeckage 的功能。&#xff08;环境准备本文不再赘述&#xff09; 功能 在电脑上访问 http://127.0.0.1:8008 就可以看到 inspeckage…...

Windows详细安装和彻底删除RabbitMQ图文流程

RabbiitMQ简介 RabbitMQ是实现了高级消息队列协议&#xff08;AMQP&#xff1a;Advanced Message Queue Protocol&#xff09;的开源消息代理软件&#xff08;亦称面向消息的中间件&#xff09;。RabbitMQ服务器是用Erlang语言编写的&#xff0c;而聚类和故障转移是构建在开放…...

自定义表单规则

const checkF (rule, value, callback) > { if (!value || value ) { callback(new Error(请输入XXXX)); } else { var params new URLSearchParams(); params.append(参数名, value); axios.post(url, params).then(operation > { if (operation && operatio…...

Spring 中 Bean 的作用域有哪些?Spring 中有哪些方式可以把 Bean 注入到 IOC 容器?

Spring 框架里面的 IOC 容器&#xff0c;可以非常方便的去帮助我们管理应用里面的Bean 对象实例。我们只需要按照 Spring 里面提供的 xml 或者注解等方式去告诉 IOC 容器&#xff0c;哪些 Bean需要被 IOC 容器管理就行了。 生命周期 既然是 Bean 对象实例的管理&#xff0c;那意…...

【01低功耗蓝牙开发】

低功耗蓝牙 低功耗蓝牙背后有个基本的概念&#xff1a;任何事物都有状态。状态可以是任何东西&#xff0c;如温度&#xff0c;电池状态等越简单的系统越便宜&#xff0c;开发更迅速&#xff0c;包含更少的错误&#xff0c;更加强健。一种技术想要获得成功必须降低成本。服务器…...

【Java 进阶篇】Java BeanUtils 使用详解

Java中的BeanUtils是一组用于操作JavaBean的工具&#xff0c;它允许你在不了解JavaBean的具体内部结构的情况下&#xff0c;访问和修改其属性。本文将详细介绍Java BeanUtils的使用&#xff0c;包括如何获取和设置JavaBean的属性&#xff0c;复制属性&#xff0c;以及如何处理嵌…...

YugaByteDB -- 全新的 “PostgreSQL“ 存储层

文章目录 0 背景1 架构1.1 Master1.2 TServer1.3 Tablet 2 读写链路2.1 DDL2.2 DML2.3 事务 3 KEY 的设计4 Rocksdb 在 YB 中的一些实践总结 0 背景 YugaByteDB 的诞生也是抓住了 spanner 推行的NewSQL 浪潮的尾巴&#xff0c;以 PG 生态为基础 用C实现的 支持 SQL 以及 CQL 语…...

众佰诚:抖音上做生意卖什么好

随着科技的发展&#xff0c;越来越多的人开始利用网络平台进行创业。抖音作为目前最火的短视频平台之一&#xff0c;也成为了许多人选择的创业渠道。那么&#xff0c;在抖音上做生意卖什么好呢? 首先&#xff0c;我们可以考虑一些具有创新性和独特性的产品。例如&#xff0c;手…...

【Redis】环境配置

环境配置 Linux版本&#xff1a; Ubuntu 22.04.2 LTS 下载redis sudo apt install redis 启动redis redis-server 输入redis-server启动redis竟然报错了&#xff0c;原因是redis已经启动&#xff0c;网上大多数的解决方案如下&#xff1a; ps -ef | grep -i redis 查询redi…...

设计交换机原理图前应先理清的框图

一、系统布局图 需重点考虑“外壳、电源、风扇、主板&#xff08;包含MAC、CPU、PHY&#xff09;、指示灯、管理网口/串口、电口/光口等连接器”在整机中的大致位置&#xff0c;在系统布局图中予以体现。 二、系统框图 &#xff08;1&#xff09;电源整体框图&#xff1b; &…...

Bellman-ford 贝尔曼-福特算法

Bellman-ford算法可以解决负权图的单源最短路径问题 --- 它的优点是可以解决有负权边的单源最短路径问题&#xff0c;而且可以判断是否负权回路 它也有明显的缺点&#xff0c;它的时间复杂度O&#xff08;N*E&#xff09;&#xff08;N是点数 &#xff0c; E是边数&#xff09…...

Docker数据目录迁移解决方案

前置工作 使用以下命令查询当前docker数据目录安装路径&#xff1a; docker info | grep "Docker Root Dir"下文以 /home/rain/docker 这个路径作为要迁移的新 Docker 安装(存储)目录 迁移方案 方法一&#xff1a;软链接 停掉Docker服务&#xff1a; systemctl…...

公共字段自动填充、菜品管理

一、公共字段填充 1.1、问题分析 1.2、实现思路 1.3、代码开发 1.3.1、自定义注解 import com.sky.enumeration.OperationType;import java.lang.annotation.ElementType; import java.lang.annotation.Retention; import java.lang.annotation.RetentionPolicy; import jav…...

前端面试 面试多起来了

就在昨天 10.17 号,同时收到了三个同学面试的消息。他们的基本情况都是双非院校本科、没有实习经历、不会消息中间件和 Spring Cloud 微服务,做的都是单体项目。但他们投递简历还算积极,从今年 9 月初就开始投递简历了,到现在也有一个多月了。 来看看,这些消息。 为…...

Qt常见类名关系整理

1、QAbstractItemModel与QAbstractItemView 模型的基类: The QAbstractItemModel class provides the abstract interface for item model classes. Inherited By: QAbstractListModel&#xff0c;QAbstractProxyModel,and QAbstractTableModel 视图的基类: The QAbstractIte…...

YOLO8实战:yolov8实现行人跟踪计数

本篇文章首先介绍YOLOV8实现人流量跟踪计数的原理,文末附代码 引言:行人跟踪统计是智能监控系统中的重要功能,可以广泛应用于人流控制、安全监控等领域。传统的行人跟踪算法往往受到光照、遮挡等因素的干扰,难以实现准确跟踪。随着深度学习技术的发展,目标检测模型逐渐成为…...

shell脚本学习-2

文章目录 一、shell参数传递二、shell中的特殊变量三、shell中的函数四、shell函数中的参数 一、shell参数传递 运行 Shell 脚本文件时我们可以给它传递一些参数&#xff0c;这些参数在脚本文件内部可以使用$n的形式来接收&#xff0c;例如&#xff0c;$1 表示第一个参数&…...

web3:智能合约浏览器版本的 IDE - remix 使用教程

如果你是一位web3行业的从业者,那么智能合约一定是要接触的,这里我们就智能合约浏览器版本的 IDE-remix来介绍一下,及简单的使用操作 目录 Remix简介官方网址语言设置使用编辑合约编译合约部署合约测试验证Remix简介 Remix 是一个开源的 Solidity 智能合约开发环境,是一款…...

19c补丁后oracle属主变化,导致不能识别磁盘组

补丁后服务器重启&#xff0c;数据库再次无法启动 ORA01017: invalid username/password; logon denied Oracle 19c 在打上 19.23 或以上补丁版本后&#xff0c;存在与用户组权限相关的问题。具体表现为&#xff0c;Oracle 实例的运行用户&#xff08;oracle&#xff09;和集…...

地震勘探——干扰波识别、井中地震时距曲线特点

目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波&#xff1a;可以用来解决所提出的地质任务的波&#xff1b;干扰波&#xff1a;所有妨碍辨认、追踪有效波的其他波。 地震勘探中&#xff0c;有效波和干扰波是相对的。例如&#xff0c;在反射波…...

Unity3D中Gfx.WaitForPresent优化方案

前言 在Unity中&#xff0c;Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染&#xff08;即CPU被阻塞&#xff09;&#xff0c;这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案&#xff1a; 对惹&#xff0c;这里有一个游戏开发交流小组&…...

边缘计算医疗风险自查APP开发方案

核心目标:在便携设备(智能手表/家用检测仪)部署轻量化疾病预测模型,实现低延迟、隐私安全的实时健康风险评估。 一、技术架构设计 #mermaid-svg-iuNaeeLK2YoFKfao {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg…...

关于nvm与node.js

1 安装nvm 安装过程中手动修改 nvm的安装路径&#xff0c; 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解&#xff0c;但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后&#xff0c;通常在该文件中会出现以下配置&…...

2024年赣州旅游投资集团社会招聘笔试真

2024年赣州旅游投资集团社会招聘笔试真 题 ( 满 分 1 0 0 分 时 间 1 2 0 分 钟 ) 一、单选题(每题只有一个正确答案,答错、不答或多答均不得分) 1.纪要的特点不包括()。 A.概括重点 B.指导传达 C. 客观纪实 D.有言必录 【答案】: D 2.1864年,()预言了电磁波的存在,并指出…...

令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍

文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结&#xff1a; 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析&#xff1a; 实际业务去理解体会统一注…...

【C语言练习】080. 使用C语言实现简单的数据库操作

080. 使用C语言实现简单的数据库操作 080. 使用C语言实现简单的数据库操作使用原生APIODBC接口第三方库ORM框架文件模拟1. 安装SQLite2. 示例代码:使用SQLite创建数据库、表和插入数据3. 编译和运行4. 示例运行输出:5. 注意事项6. 总结080. 使用C语言实现简单的数据库操作 在…...

全志A40i android7.1 调试信息打印串口由uart0改为uart3

一&#xff0c;概述 1. 目的 将调试信息打印串口由uart0改为uart3。 2. 版本信息 Uboot版本&#xff1a;2014.07&#xff1b; Kernel版本&#xff1a;Linux-3.10&#xff1b; 二&#xff0c;Uboot 1. sys_config.fex改动 使能uart3(TX:PH00 RX:PH01)&#xff0c;并让boo…...

Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)

目录 一、&#x1f44b;&#x1f3fb;前言 二、&#x1f608;sinx波动的基本原理 三、&#x1f608;波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、&#x1f30a;波动优化…...