当前位置: 首页 > news >正文

CNN卷积神经网络模型的GPU显存占用分析

一、参考资料

浅谈深度学习:如何计算模型以及中间变量的显存占用大小
如何在Pytorch中精细化利用显存

二、相关介绍

0. 预备知识

为了方便计算,本文按照以下标准进行单位换算

  • 1 G = 1000 MB
  • 1 M = 1000 KB
  • 1 K = 1000 Byte
  • 1 B = 8 bit

1. 模型参数量的计算方法

参考博客:CNN卷积神经网络模型的参数量、计算量计算方法(概念版)

2. 张量的数据类型

Data typedtypeCPU tensorGPU tensor
32-bit floating pointtorch.float32 or torch.floattorch.FloatTensortorch.cuda.FloatTensor
64-bit floating pointtorch.float64 or torch.doubletorch.DoubleTensortorch.cuda.DoubleTensor
16-bit floating pointtorch.float16 or torch.halftorch.HalfTensortorch.cuda.HalfTensor
8-bit integer (unsigned)torch.uint8torch.ByteTensortorch.cuda.ByteTensor
8-bit integer (signed)torch.int8torch.CharTensortorch.cuda.CharTensor
16-bit integer (signed)torch.int16 or torch.shorttorch.ShortTensortorch.cuda.ShartTensor
32-bit integer (signed)torch.int32 or torch.inttorch.IntTensortorch.cuda.IntTensor
64-bit integer (signed)torch.int64 or torch.longtorch.LongTensortorch.cuda.LongTensor

通常,模型训练使用以下两种数据类型:

  • float32 单精度浮点型;
  • int32 整型。

8bit的整型int所占的空间为 1B32bit的浮点型float所占空间为 4B。而double双精度浮点型和长整型long在平常的模型训练中一般不会使用。

消费级显卡对单精度计算有优化,服务器级显卡对双精度计算有优化

3. 关于inplace=False

我们都知道激活函数Relu()有一个默认参数inplace,默认设置为False。当设置为True时,我们在通过relu()计算得到的新值不会占用新的空间,而是直接覆盖原来的值,这也就是为什么当inplace参数设置为True时可以节省一部分内存的缘故。
在这里插入图片描述

三、显存占用相关介绍

0. 引言

torch.FatalError: cuda runtime error (2) : out of memory at /opt/conda/conda-bld/pytorch_1524590031827/work/aten/src/THC/generic/THCStorage.cu:58

由于显存不足,导致程序崩溃。学会计算模型以及中间变量所占显存大小,是很有必要的。

1. 图片的显存占用

假设一张RGB三通道真彩色图片,长宽分别为 500x500,数据类型为单精度浮点型,那么这张图片所占显存的大小为:500x500x3x4B=3MB。而一个 (256, 3, 100, 100)-(N, C, H, W) 的FloatTensor所占的空间为:256x3x100x100x4B = 31MB

2. 模型的显存占用

通常,模型占用的显存来自两个部分:

  • 模型自身的参数(params),即有参数的网络层。
  • 模型在计算时产生的中间参数(memory)
    在这里插入图片描述

一般来说,模型自身参数并不会占用很多的显存空间,主要占用显存空间的是计算时产生的中间参数

2.1 模型自身的参数(params)

有参数的网络层,包括:

  • 卷积层Conv2d(Cin, Cout, K),参数量为 Cin × Cout × K × K
  • 全连接层Linear(M->N),参数量为 M×N
  • BatchNorm层BatchNorm(N),参数量为 2N
  • Embedding层Embedding(N,W),参数量为 N × W

不带参数的网络层,包括:

  • 激活层Relu等;
  • 池化层;
  • Dropout层;

2.2 模型的中间参数(memory)

  • 模型在计算时产生的中间参数,也就是输入图像在计算时每一层产生的输入和输出;
  • backward反向传播计算时产生的额外的中间参数;
  • 优化器在优化时产生的额外的模型参数。

3. 实际显存与理论显存

为什么实际占用的显存空间比理论计算的大?
大概原因是深度学习框架一些额外的开销。不过,通过上面公式计算出来的显存理论值和实际值不会相差太多。

4. 计算显存占用大小

4.1 方法一(推荐)

使用 torchstat 工具,计算模型的显存占用大小。参考博客:CNN卷积神经网络模型的参数量计算方法(经验版)

4.2 方法二

当然,也可以自定义函数计算显存占用大小,代码如下所示:

# 模型显存占用监测函数
# model:输入的模型
# input:实际中需要输入的Tensor变量
# type_size 默认为 4 默认类型为 float32 def modelsize(model, input, type_size=4):para = sum([np.prod(list(p.size())) for p in model.parameters()])print('Model {} : params: {:4f}M'.format(model._get_name(), para * type_size / 1000 / 1000))input_ = input.clone()input_.requires_grad_(requires_grad=False)mods = list(model.modules())out_sizes = []for i in range(1, len(mods)):m = mods[i]if isinstance(m, nn.ReLU):if m.inplace:continueout = m(input_)out_sizes.append(np.array(out.size()))input_ = outtotal_nums = 0for i in range(len(out_sizes)):s = out_sizes[i]nums = np.prod(np.array(s))total_nums += numsprint('Model {} : intermedite variables: {:3f} M (without backward)'.format(model._get_name(), total_nums * type_size / 1000 / 1000))print('Model {} : intermedite variables: {:3f} M (with backward)'.format(model._get_name(), total_nums * type_size*2 / 1000 / 1000))

重要说明:当然,我们计算出来的显存占用理论值仅仅是做参考作用,因为Pytorch在运行的时候需要额外的显存开销,所以实际的显存会比我们计算的稍微大一些。

5. 显存优化方法

在Pytorch中优化显存是我们处理大量数据时必要的做法,因为我们并不可能拥有无限的显存。显存是有限的,而数据是无限的,我们只有优化显存的使用量才能够最大化地利用我们的数据。

优化除了算法层的优化,最基本的显存优化无非也就以下几点:

  • 减少输入图像的尺寸;
  • 减少batch,减少每次的输入图像数量;
  • 多使用下采样,池化层;
  • 一些神经网络层可以进行小优化,利用relu层中设置inplace
  • 购买显存更大的显卡;
  • 从深度学习框架上面进行优化。

5.1 牺牲计算速度减少显存使用量

在PyTorch中,如果一个模型占用的显存太大了,可以将一个计算过程分成两半,先计算前一半,保存后一半需要的中间结果,然后再计算后一半。

# 首先设置输入的input=>requires_grad=True
# 如果不设置可能会导致得到的gradient为0# 输入
input = torch.rand(1, 10, requires_grad=True)# 假设我们有一个非常深的网络
layers = [nn.Linear(10, 10) for _ in range(1000)]# 定义要计算的层函数,可以看到我们定义了两个
# 一个计算前500个层,另一个计算后500个层def run_first_half(*args):x = args[0]for layer in layers[:500]:x = layer(x)return xdef run_second_half(*args):x = args[0]for layer in layers[500:-1]:x = layer(x)return x# 我们引入新加的checkpoint
from torch.utils.checkpoint import checkpointx = checkpoint(run_first_half, input)
x = checkpoint(run_second_half, x)# 最后一层单独调出来执行
x = layers[-1](x)
x.sum.backward() 

对于Sequential-model来说,因为Sequential()中可以包含很多的block,所以官方提供了另一个功能包:

input = torch.rand(1, 10, requires_grad=True)
layers = [nn.Linear(10, 10) for _ in range(1000)]
model = nn.Sequential(*layers)from torch.utils.checkpoint import checkpoint_sequential# 分成两个部分
num_segments = 2
x = checkpoint_sequential(model, num_segments, input)
x.sum().backward()  

6. 跟踪显存使用情况

再次浅谈Pytorch中的显存利用问题(附完善显存跟踪代码)

我们借用 Pytorch-Memory-Utils 这个工具来检测我们在训练过程中关于显存的变化情况,分析出我们如何正确释放多余的显存。

通过Pytorch-Memory-Utils工具,我们在使用显存的代码中间插入检测函数,就可以输出类似于下面的信息,At __main__ <module>: line 13 Total Used Memory:696.5 Mb表示在当前行代码时所占用的显存,即在我们的代码中执行到13行的时候所占显存为695.5Mb。At __main__ <module>: line 15 Total Used Memory:1142.0 Mb表示程序执行到15行时所占的显存为1142.0Mb。两条数据之间表示所占显存的tensor变量。

# 12-Sep-18-21:48:45-gpu_mem_track.txtGPU Memory Track | 12-Sep-18-21:48:45 | Total Used Memory:696.5  MbAt __main__ <module>: line 13                        Total Used Memory:696.5  Mb+ | 7 * Size:(512, 512, 3, 3)     | Memory: 66.060 M | <class 'torch.nn.parameter.Parameter'>
+ | 1 * Size:(512, 256, 3, 3)     | Memory: 4.7185 M | <class 'torch.nn.parameter.Parameter'>
+ | 1 * Size:(64, 64, 3, 3)       | Memory: 0.1474 M | <class 'torch.nn.parameter.Parameter'>
+ | 1 * Size:(128, 64, 3, 3)      | Memory: 0.2949 M | <class 'torch.nn.parameter.Parameter'>
+ | 1 * Size:(128, 128, 3, 3)     | Memory: 0.5898 M | <class 'torch.nn.parameter.Parameter'>
+ | 8 * Size:(512,)               | Memory: 0.0163 M | <class 'torch.nn.parameter.Parameter'>
+ | 3 * Size:(256, 256, 3, 3)     | Memory: 7.0778 M | <class 'torch.nn.parameter.Parameter'>
+ | 1 * Size:(256, 128, 3, 3)     | Memory: 1.1796 M | <class 'torch.nn.parameter.Parameter'>
+ | 2 * Size:(64,)                | Memory: 0.0005 M | <class 'torch.nn.parameter.Parameter'>
+ | 4 * Size:(256,)               | Memory: 0.0040 M | <class 'torch.nn.parameter.Parameter'>
+ | 2 * Size:(128,)               | Memory: 0.0010 M | <class 'torch.nn.parameter.Parameter'>
+ | 1 * Size:(64, 3, 3, 3)        | Memory: 0.0069 M | <class 'torch.nn.parameter.Parameter'>At __main__ <module>: line 15                        Total Used Memory:1142.0 Mb+ | 1 * Size:(60, 3, 512, 512)    | Memory: 188.74 M | <class 'torch.Tensor'>
+ | 1 * Size:(30, 3, 512, 512)    | Memory: 94.371 M | <class 'torch.Tensor'>
+ | 1 * Size:(40, 3, 512, 512)    | Memory: 125.82 M | <class 'torch.Tensor'>At __main__ <module>: line 21                        Total Used Memory:1550.9 Mb+ | 1 * Size:(120, 3, 512, 512)   | Memory: 377.48 M | <class 'torch.Tensor'>
+ | 1 * Size:(80, 3, 512, 512)    | Memory: 251.65 M | <class 'torch.Tensor'>At __main__ <module>: line 26                        Total Used Memory:2180.1 Mb- | 1 * Size:(120, 3, 512, 512)   | Memory: 377.48 M | <class 'torch.Tensor'> 
- | 1 * Size:(40, 3, 512, 512)    | Memory: 125.82 M | <class 'torch.Tensor'> At __main__ <module>: line 32                        Total Used Memory:1676.8 Mb

当然这个检测工具不仅适用于Pytorch,其他的深度学习框架也同样适用,不过需要注意下静态图和动态图在实际运行过程中的区别。

相关文章:

CNN卷积神经网络模型的GPU显存占用分析

一、参考资料 浅谈深度学习:如何计算模型以及中间变量的显存占用大小 如何在Pytorch中精细化利用显存 二、相关介绍 0. 预备知识 为了方便计算&#xff0c;本文按照以下标准进行单位换算&#xff1a; 1 G 1000 MB1 M 1000 KB1 K 1000 Byte1 B 8 bit 1. 模型参数量的计…...

LSF 概览——了解 LSF 是如何满足您的作业要求,并找到最佳资源来运行该作业的

LSF 概览 了解 LSF 是如何满足您的作业要求&#xff0c;并找到最佳资源来运行该作业的。 IBM Spectrum LSF ("LSF", load sharing facility 的简称) 软件是行业领先的企业级软件。LSF 将工作分散在现有的各种 IT 资源中&#xff0c;以创建共享的&#xff0c;可扩展…...

三.RocketMQ单机安装及集群搭建

RocketMQ单机安装及集群搭建 一&#xff1a;安装环境1.软硬件要求2.下载RocketMQ 二.安装单机MQ1.上传并解压2.目录介绍3.修改MQ启动时初始JVM内存4.启动NameServer与Broker5.测试RocketMQ 三.RocketMQ集群搭建1.集群概念特点2.集群模式分类3.集群工作流程4.双主双从集群搭建4.…...

uniapp 模仿 Android的Menu菜单栏

下面这张图就是我们要模拟的菜单功能 一、模拟的逻辑 1. 我们使用uni-popup组件&#xff08;记得要用hbuilder X导入该组件&#xff09;uni-app官网 2. 将组件内的菜单自定义样式 二、uniapp代码 写法vue3 <template><view><uni-popup ref"showMenu"…...

wordcloud Python中的词云库

Python中的词云库是一个非常流行的文本可视化工具&#xff0c;可以将文本中的关键词以词云形式呈现。本篇文章将详细讲解Python中的词云库的使用和API以及代码注释。 安装词云库 安装词云库的方式很简单&#xff0c;只需要在命令行中使用pip命令即可。具体命令如下所示&#…...

直播间讨论区需要WebSocket,简单了解下

由于 http 存在一个明显的弊端&#xff08;消息只能有客户端推送到服务器端&#xff0c;而服务器端不能主动推送到客户端&#xff09;&#xff0c;导致如果服务器如果有连续的变化&#xff0c;这时只能使用轮询&#xff0c;而轮询效率过低&#xff0c;并不适合。于是 WebSocket…...

2024年天津高职升本科考试将于11月开始报名

2024年天津高职升本科考试文化课网上报名及其现场确认将于11月下旬开始 2023年11月1日&#xff0c;天津招考资讯官方网站发布了本月&#xff08;11月&#xff09;报名事项安排&#xff0c;将进行下列考试项目网上报名工作&#xff0c;2024年备考天津专升本的考生可以看到2024年…...

linux mysql 创建数据库并配置用户远程管理

要在Linux上创建MySQL数据库并配置用户以实现远程管理&#xff0c;您可以执行以下步骤&#xff1a; 1. 登录到MySQL服务器&#xff1a; 在您的Linux终端中&#xff0c;使用以下命令登录到MySQL服务器。您需要提供MySQL服务器的用户名和密码。 mysql -u root -p 输入密码后&a…...

pppoe拨号案例

R3服务端 interface LoopBack0 ip address 1.1.1.1 255.255.255.255 aaa local-user test password cipher admin local-user test service-type ppp ip pool test network 100.0.0.0 mask 255.255.255.0 interface Virtual-Template0 ppp authentication-mode chap remote …...

基于STM32C8T6的智能蓝牙小车控制设计

**单片机设计介绍&#xff0c;1655基于STM32C8T6的智能蓝牙小车控制设计 文章目录 一 概要二、功能设计设计思路 三、 软件设计五、 程序文档 六、 结论七、 文章目录 一 概要 基于STM32C8T6的智能蓝牙小车控制设计是基于STM32微控制器和蓝牙模块开发的一种小型智能车辆控制系统…...

P3983 赛斯石(赛后强化版),背包

题目背景 白露横江&#xff0c;水光接天&#xff0c;纵一苇之所如&#xff0c;凌万顷之茫然。——苏轼真程海洋近来需要进购大批赛斯石&#xff0c;你或许会问&#xff0c;什么是赛斯石&#xff1f; 首先我们来了解一下赛斯&#xff0c;赛斯是一个重量单位&#xff0c;我们用…...

系统架构设计师历年真题案例知识点汇总

常见的软件质量属性有多种&#xff0c;例如性能&#xff08;Performance)、可用性&#xff08;Availability)、可靠性&#xff08;Reliability)、健壮性&#xff08;Robustness)、安全性&#xff08;Security)、可修改性&#xff08;Modification)、可变性(Changeability)、易用…...

缓存击穿只会逻辑过期 OR 互斥锁?深入思考 == 鹤立鸡群

网上但凡看得见的文章&#xff0c;大部分在说缓存穿透时都是无脑分布式锁 / 逻辑过期&#xff0c;分布式锁一点问题都没有么&#xff1f;逻辑过期一点问题都没有么&#xff1f;还能不能再进一步优化&#xff1f; 在聊聊缓存击穿的双重判定锁之前&#xff0c;我们将按照循循渐进…...

从 Seq2Seq 到 Attention:彻底改变序列建模

探究Attention机制和意力的起源。 简介 在这篇博文[1]中&#xff0c;将讨论注意力机制的起源&#xff0c;然后介绍第一篇将注意力用于神经机器翻译的论文。由于上下文压缩、短期记忆限制和偏差&#xff0c;具有 2 个 RNN 的 Seq2Seq 模型失败了。该模型的 BLEU 分数随着序列长度…...

手机通讯类、ip查询、智能核验、生活常用API接口推荐

手机通讯类 手机号码归属地&#xff1a;提供三大运营商的手机号码归属地查询。 空号检测&#xff1a;通过手机号码查询其在网活跃度&#xff0c;返回包括空号、停机等状态。 手机在网状态&#xff1a;支持传入三大运营商的号码&#xff0c;查询手机号在网状态&#xff0c;返…...

1.6 基本安全设计准则

思维导图&#xff1a; 1.6 基本安全设计准则笔记 目标&#xff1a;理解和遵循一套广泛认可的安全设计准则&#xff0c;以指导保护机制的开发。 主要准则&#xff1a; 机制的经济性&#xff1a;安全机制应设计得简单、短小&#xff0c;便于测试和验证&#xff0c;减少漏洞和降…...

图扑 HT for Web 手机端运维管理系统

随着信息技术的快速发展&#xff0c;网络技术的应用涉及到人们生活的方方面面。其中&#xff0c;手机运维管理系统可提供数字化、智能化的方式&#xff0c;帮助企业和组织管理监控企业的 IT 环境&#xff0c;提高运维效率、降低维护成本、增强安全性、提升服务质量&#xff0c;…...

LiveGBS流媒体平台GB/T28181常见问题-国标级联海康国标级联大华国标级联华为等,配置了国标级联, 上级看不到通道该怎么办?

LiveGBS常见问题-国标级联海康国标级联大华国标级联华为等&#xff0c;配置了国标级联, 上级看不到通道该怎么办? 1、如何配置国标级联2、上级看不到通道排查2.1、是否共享通道2.3、通道编号是否满足上级要求 3、如何抓包分析4、搭建GB28181视频直播平台 1、如何配置国标级联 …...

数字频带传输——二进制数字调制及MATLAB仿真

文章目录 前言一、OOK1、表达式2、功率谱密度3、调制框图 二、2PSK1、表达式2、功率谱密度 三、2FSK1、表达式 四、MATLAB 仿真1、MATLAB 源码2、仿真及结果①、输入信号及频谱图②、2ASK 调制③、2PSK 调制④、2FSK 调制⑤、随机相位 2FSK 调制 五、资源自取 前言 数字频带信…...

Bitdu 150万美元投资MSG:Web3合作典范催动极致交易体验

在Web3时代&#xff0c;如何一键把握DEX领域的机遇&#xff0c;是摆在一众中心化交易所面前的难题。 近期&#xff0c;新锐加密资产交易所Bitdu向MsgSender&#xff08;MSG&#xff09;投资150万美元&#xff0c;引起了专业的交易者们的关注。大家普遍认为&#xff0c;这一事件…...

Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例

使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件&#xff0c;常用于在两个集合之间进行数据转移&#xff0c;如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model&#xff1a;绑定右侧列表的值&…...

Python爬虫实战:研究feedparser库相关技术

1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的信息资源。RSS(Really Simple Syndication)作为一种标准化的信息聚合技术,被广泛用于网站内容的发布和订阅。通过 RSS,用户可以方便地获取网站更新的内容,而无需频繁访问各个网站。 然而,互联网…...

OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 在 GPU 上对图像执行 均值漂移滤波&#xff08;Mean Shift Filtering&#xff09;&#xff0c;用于图像分割或平滑处理。 该函数将输入图像中的…...

Java数值运算常见陷阱与规避方法

整数除法中的舍入问题 问题现象 当开发者预期进行浮点除法却误用整数除法时,会出现小数部分被截断的情况。典型错误模式如下: void process(int value) {double half = value / 2; // 整数除法导致截断// 使用half变量 }此时...

LLMs 系列实操科普(1)

写在前面&#xff1a; 本期内容我们继续 Andrej Karpathy 的《How I use LLMs》讲座内容&#xff0c;原视频时长 ~130 分钟&#xff0c;以实操演示主流的一些 LLMs 的使用&#xff0c;由于涉及到实操&#xff0c;实际上并不适合以文字整理&#xff0c;但还是决定尽量整理一份笔…...

在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)

考察一般的三次多项式&#xff0c;以r为参数&#xff1a; p[z_, r_] : z^3 (r - 1) z - r; roots[r_] : z /. Solve[p[z, r] 0, z]&#xff1b; 此多项式的根为&#xff1a; 尽管看起来这个多项式是特殊的&#xff0c;其实一般的三次多项式都是可以通过线性变换化为这个形式…...

海云安高敏捷信创白盒SCAP入选《中国网络安全细分领域产品名录》

近日&#xff0c;嘶吼安全产业研究院发布《中国网络安全细分领域产品名录》&#xff0c;海云安高敏捷信创白盒&#xff08;SCAP&#xff09;成功入选软件供应链安全领域产品名录。 在数字化转型加速的今天&#xff0c;网络安全已成为企业生存与发展的核心基石&#xff0c;为了解…...

门静脉高压——表现

一、门静脉高压表现 00:01 1. 门静脉构成 00:13 组成结构&#xff1a;由肠系膜上静脉和脾静脉汇合构成&#xff0c;是肝脏血液供应的主要来源。淤血后果&#xff1a;门静脉淤血会同时导致脾静脉和肠系膜上静脉淤血&#xff0c;引发后续系列症状。 2. 脾大和脾功能亢进 00:46 …...

CTF show 数学不及格

拿到题目先查一下壳&#xff0c;看一下信息 发现是一个ELF文件&#xff0c;64位的 ​ 用IDA Pro 64 打开这个文件 ​ 然后点击F5进行伪代码转换 可以看到有五个if判断&#xff0c;第一个argc ! 5这个判断并没有起太大作用&#xff0c;主要是下面四个if判断 ​ 根据题目…...

后端下载限速(redis记录实时并发,bucket4j动态限速)

✅ 使用 Redis 记录 所有用户的实时并发下载数✅ 使用 Bucket4j 实现 全局下载速率限制&#xff08;动态&#xff09;✅ 支持 动态调整限速策略✅ 下载接口安全、稳定、可监控 &#x1f9e9; 整体架构概览 模块功能Redis存储全局并发数和带宽令牌桶状态Bucket4j Redis分布式限…...