基于YOLOv8模型暗夜下人脸目标检测系统(PyTorch+Pyside6+YOLOv8模型)
摘要:基于YOLOv8模型暗夜下人脸目标检测系统可用于日常生活中检测与定位黑夜下人脸目标,利用深度学习算法可实现图片、视频、摄像头等方式的目标检测,另外本系统还支持图片、视频等格式的结果可视化与结果导出。本系统采用YOLOv8目标检测算法训练数据集,使用Pysdie6库来搭建前端页面展示系统。另外本系统支持的功能还包括训练模型的导入、初始化;检测置信分与检测后处理IOU阈值的调节;图像的上传、检测、可视化结果展示与检测结果导出;视频的上传、检测、可视化结果展示与检测结果导出;摄像头的图像输入、检测与可视化结果展示;已检测目标个数与列表、位置信息;前向推理用时等功能。本博文提供了完整的Python代码与安装和使用教程,适合新入门的朋友参考,部分重要代码部分都有注释,完整代码资源文件请转至文末的下载链接。
需要源码的朋友在后台私信博主获取下载链接
基本介绍
近年来,机器学习和深度学习取得了较大的发展,深度学习方法在检测精度和速度方面与传统方法相比表现出更良好的性能。YOLOv8 是 Ultralytics 公司继 YOLOv5 算法之后开发的下一代算法模型,目前支持图像分类、物体检测和实例分割任务。YOLOv8 是一个 SOTA模型,它建立在之前YOLO 系列模型的成功基础上,并引入了新的功能和改进,以进一步提升性能和灵活性。具体创新包括:一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行。因此本博文利用YOLOv8目标检测算法实现一种基于YOLOv8模型暗夜下人脸目标检测系统,再使用Pyside6库搭建出界面系统,完成目标检测页面的开发。本博主之前发布过关于YOLOv5算法的相关模型与界面,需要的朋友可从我之前发布的博客查看。另外本博主计划将YOLOv5、YOLOv6、YOLOv7和YOLOv8一起联合发布,需要的朋友可以持续关注,欢迎朋友们关注收藏。
环境搭建
(1)打开项目目录,在搜索框内输入cmd打开终端
(2)新建一个虚拟环境(conda create -n yolo8 python=3.8)
(3)激活环境,安装ultralytics库(yolov8官方库),pip install ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple
(4)注意到这种安装方式只会安装cpu版torch,如需安装gpu版torch,需在安装包之前先安装torch:pip install torch2.0.1+cu118 torchvision0.15.2+cu118 -f https://download.pytorch.org/whl/torch_stable.html;再,pip install ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple
(5)安装图形化界面库pyside6:pip install pyside6 -i https://pypi.tuna.tsinghua.edu.cn/simple
界面及功能展示
下面给出本博文设计的软件界面,整体界面简洁大方,大体功能包括训练模型的导入、初始化;置信分与IOU阈值的调节、图像上传、检测、可视化结果展示、结果导出与结束检测;视频的上传、检测、可视化结果展示、结果导出与结束检测;已检测目标列表、位置信息;前向推理用时。初始界面如下图:
模型选择与初始化
用户可以点击模型权重选择按钮上传训练好的模型权重,训练权重格式可为.pt、.onnx以及engine等,之后再点击模型权重初始化按钮可实现已选择模型初始化的配置。
置信分与IOU的改变
在Confidence或IOU下方的输入框中改变值即可同步改变滑动条的进度,同时改变滑动条的进度值也可同步改变输入框的值;Confidence或IOU值的改变将同步到模型里的配置,将改变检测置信度阈值与IOU阈值。
图像选择、检测与导出
用户可以点击选择图像按钮上传单张图像进行检测与识别,上传成功后系统界面会同步显示输入图像。
再点击图像检测按钮可完成输入图像的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
再点击检测结果展示按钮可在系统左下方显示输入图像检测的结果,系统将显示识别出图片中的目标的类别、位置和置信度信息。
点击图像检测结果导出按钮即可导出检测后的图像,在保存栏里输入保存的图片名称及后缀即可实现检测结果图像的保存。
点击结束图像检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频,或者点击打开摄像头按钮来开启摄像头。
视频选择、检测与导出
用户点击选择视频按钮上传视频进行检测与识别,之后系统会将视频的第一帧输入到系统界面中显示。
再点击视频检测按钮可完成输入视频的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
点击暂停视频检测按钮即可实现输入视频的暂停,此时按钮变为继续视频检测,输入视频帧与帧检测结果会保留在系统界面,可点击下拉目标框选择已检测目标的坐标位置信息,再点击继续视频检测按钮即可实现输入视频的检测。
点击视频检测结果导出按钮即可导出检测后的视频,在保存栏里输入保存的图片名称及后缀即可实现检测结果视频的保存。
点击结束视频检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频,或者点击打开摄像头按钮来开启摄像头。
摄像头打开、检测与结束
用户可以点击打开摄像头按钮来打开摄像头设备进行检测与识别,之后系统会将摄像头图像输入到系统界面中显示。
再点击摄像头检测按钮可完成输入摄像头的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
点击结束视频检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频,或者点击打开摄像头按钮来开启摄像头。
算法原理介绍
本系统采用了基于深度学习的单阶段目标检测算法YOLOv8,相较于之前的YOLO系列目标检测算法,YOLOv8目标检测算法具有如下的几点优势:(1)更友好的安装/运行方式;(2)速度更快、准确率更高;(3)新的backbone,将YOLOv5中的C3更换为C2F;(4)YOLO系列第一次尝试使用anchor-free;(5)新的损失函数。YOLOv8模型的整体结构如下图所示,原图见mmyolo的官方仓库。
YOLOv8与YOLOv5模型最明显的差异是使用C2F模块替换了原来的C3模块,两个模块的结构如下图所示,原图见mmyolo的官方仓库。
另外Head 部分变化最大,从原先的耦合头变成了解耦头,并且从 YOLOv5 的 Anchor-Based 变成了 Anchor-Free。其结构对比如下图所示。
数据集介绍
本系统使用的DarkFace人脸数据集手动标注了人脸这一个类别,数据集总计6000张图片。该数据集中类别都有大量的旋转和不同的光照条件,有助于训练出更加鲁棒的检测模型。本文实验的DarkFace人脸检测识别数据集包含训练集4819张图片,验证集1181张图片,选取部分数据部分样本数据集如下图所示。此外,为了增强模型的泛化能力和鲁棒性,我们还使用了数据增强技术,包括随机旋转、缩放、裁剪和颜色变换等,以扩充数据集并减少过拟合风险。
关键代码解析
在训练阶段,我们使用了预训练模型作为初始模型进行训练,然后通过多次迭代优化网络参数,以达到更好的检测性能。在训练过程中,我们采用了学习率衰减和数据增强等技术,以增强模型的泛化能力和鲁棒性。一个简单的单卡模型训练命令如下。
在训练时也可指定更多的参数,大部分重要的参数如下所示:
在测试阶段,我们使用了训练好的模型来对新的图片和视频进行检测。通过设置阈值,将置信度低于阈值的检测框过滤掉,最终得到检测结果。同时,我们还可以将检测结果保存为图片或视频格式,以便进行后续分析和应用。本系统基于YOLOv8算法,使用PyTorch实现。代码中用到的主要库包括PyTorch、NumPy、OpenCV、Pyside6等。
Pyside6界面设计
PySide是一个Python的图形化界面(GUI)库,由C++版的Qt开发而来,在用法上基本与C++版没有特别大的差异。相对于其他Python GUI库来说,PySide开发较快,功能更完善,而且文档支持更好。在本博文中,我们使用Pyside6库创建一个图形化界面,为用户提供简单易用的交互界面,实现用户选择图片、视频进行目标检测。
我们使用Qt Designer设计图形界面,然后使用Pyside6将设计好的UI文件转换为Python代码。图形界面中包含多个UI控件,例如:标签、按钮、文本框、多选框等。通过Pyside6中的信号槽机制,可以使得UI控件与程序逻辑代码相互连接。
实验结果与分析
在实验结果与分析部分,我们使用精度和召回率等指标来评估模型的性能,还通过损失曲线和PR曲线来分析训练过程。在训练阶段,我们使用了前面介绍的数据集进行训练,使用了YOLOv8算法对数据集训练,总计训练了100个epochs。在训练过程中,我们使用tensorboard记录了模型在训练集和验证集上的损失曲线。从下图可以看出,随着训练次数的增加,模型的训练损失和验证损失都逐渐降低,说明模型不断地学习到更加精准的特征。在训练结束后,我们使用模型在数据集的验证集上进行了评估,得到了以下结果。
下图展示了我们训练的YOLOv8模型在验证集上的PR曲线,从图中可以看出,模型取得了较高的召回率和精确率,整体表现良好。
下图展示了本博文在使用YOLOv8模型对数据集进行训练时候的Mosaic数据增强图像。
综上,本博文训练得到的YOLOv8模型在数据集上表现良好,具有较高的检测精度和鲁棒性,可以在实际场景中应用。另外本博主对整个系统进行了详细测试,最终开发出一版流畅的高精度目标检测系统界面,就是本博文演示部分的展示,完整的UI界面、测试图片视频、代码文件等均已打包上传,感兴趣的朋友可以关注我私信获取。另外本博文的PDF与更多的目标检测识别系统请关注笔者的微信公众号 BestSongC。
其他基于深度学习的目标检测系统如西红柿、猫狗、山羊、野生目标、烟头、二维码、头盔、交警、野生动物、野外烟雾、人体摔倒识别、红外行人、家禽猪、苹果、推土机、蜜蜂、打电话、鸽子、足球、奶牛、人脸口罩、安全背心、烟雾检测系统等有需要的朋友关注我,从博主其他视频中
完整项目目录如下所示
相关文章:

基于YOLOv8模型暗夜下人脸目标检测系统(PyTorch+Pyside6+YOLOv8模型)
摘要:基于YOLOv8模型暗夜下人脸目标检测系统可用于日常生活中检测与定位黑夜下人脸目标,利用深度学习算法可实现图片、视频、摄像头等方式的目标检测,另外本系统还支持图片、视频等格式的结果可视化与结果导出。本系统采用YOLOv8目标检测算法…...

如何在 Photoshop 中使用位图模式制作自定义音乐海报
如何在 Photoshop 中使用位图创建炫酷的音乐海报设计。 1.如何设置新的 Photoshop 文件 步骤1 在 Photoshop中,转到 “文件”>“新建”。将文档命名为 “音乐海报”。 将宽度设置 为 1270 px , 高度 设置为 1600 px。将分辨率 设置 为 72 像素/英寸…...

1 — NLP 的文本预处理技术
一、说明 在本文中,我们将讨论以下主题:1为什么文本预处理很重要?2 文本预处理技术。这个文对预处理做一个完整化、程序化处理,这对NLP处理项目中有很大参考性。 二、为什么文本预处理很重要? 数据质量显着影响机器学习…...

TypeScript之泛型
一、是什么 泛型程序设计(generic programming)是程序设计语言的一种风格或范式 泛型允许我们在强类型程序设计语言中编写代码时使用一些以后才指定的类型,在实例化时作为参数指明这些类型 在typescript中,定义函数,…...

一个小妙招从Prompt菜鸟秒变专家!加州大学提出PromptAgent,帮你高效使用ChatGPT!
夕小瑶科技说 原创 作者 | 谢年年、王二狗 有了ChatGPT、GPT4之后,我们的工作学习效率得到大大提升(特别在凑字数方面୧(๑•̀◡•́๑)૭)。 作为一个工具,有人觉得好用,自然也有人觉得难用。 要把大模型用得6&am…...

Netty通信框架
Netty框架的底层是NIO,NIO:non-blocking io 非阻塞IO 一个线程可以处理多个通道,减少线程创建数量; 读写非阻塞,节约资源:没有可读/可写数据时,不会发生阻塞导致线程资源的浪费 一…...

6西格玛质量标准: 提升业务效率的关键
在现代竞争激烈的商业环境中,企业需要不断提高效率,降低成本,同时确保产品和服务的质量。为了达到这个目标,许多企业已经转向了6西格玛质量标准。这个方法旨在通过最小化缺陷和提高流程稳定性来优化业务运作,为客户提供…...

OpenGL ES相关库加载3D 车辆模型
需求类似奇瑞的这个效果,就是能全方位旋转拖拽看车,以及点击开关车门车窗后备箱等 瑞虎9全景看车 (chery.cn) 最开始收到这个需求的时候还有点无所适从,因为以前没有做过类似的效果,后面一经搜索后发现实现的方式五花八门…...

云原生环境下JAVA应用容器JVM内存如何配置?—— 筑梦之路
Docker环境下的JVM参数非定值配置 —— 筑梦之路_docker jvm设置-CSDN博客 之前简单地记录过一篇,这里在之前的基础上更加细化一下。 场景说明 使用Java开发且设置的JVM堆空间过小时,程序会出现系统内存不足OOM(Out of Memory)的…...

防雷接地测试方法完整方案
防雷接地是保障电力系统、电子设备和建筑物安全的重要措施,防雷接地测试是检验防雷接地装置是否合格的必要手段。本文介绍了防雷接地测试的原理、方法和注意事项,以及如何编写防雷接地测试报告。 地凯科技防雷接地测试的原理 防雷接地测试的基本原理是…...

【云原生-K8s】Kubernetes安全组件CIS基准kube-beach安装及使用
基础介绍kube-beach介绍kube-beach 下载百度网盘下载wget下载 kube-beach安装kube-beach使用基础参数示例结果说明 基础介绍 为了保证集群以及容器应用的安全,Kubernetes 提供了多种安全机制,限制容器的行为,减少容器和集群的攻击面…...

玩家必备,2款顶级游戏录屏软件!
“游戏怎么录屏呀?最近迷上了网游,觉得自己的游戏技术挺厉害的,想把游戏视频录下来出一个教程,方便给朋友进行参考,但是我不会录屏,大家有没有游戏录屏的软件或者方法推荐一下。” 随着游戏产业的飞速发展…...

七、W5100S/W5500+RP2040树莓派Pico<UDP 组播>
文章目录 1. 前言2. 相关简介2.1 简述2.2 优点2.3 应用 3. WIZnet以太网芯片4. UDP 组播回环测试4.1 程序流程图4.2 测试准备4.3 连接方式4.4 相关代码4.5 测试现象 5. 注意事项6. 相关链接 1. 前言 UDP组播是一种基于UDP协议的通信方式,它允许一台计算机通过发送单…...

Wonder3D:用单张图片生成纹理网格
Wonder3D 只需 2 ∼ 3 分钟即可从单视图图像重建高度详细的纹理网格。 Wonder3D首先通过跨域扩散模型生成一致的多视图法线图和相应的彩色图像,然后利用新颖的法线融合方法实现快速、高质量的重建。 推荐:用 NSDT编辑器 快速搭建可编程3D场景 1、推理准…...

macOS 创建Flutter项目
参考在 macOS 上安装和配置 Flutter 开发环境 - Flutter 中文文档 - Flutter 中文开发者网站 - Flutter 这个文档,配置好flutter的环境 编辑器可以选择vscode或者IDEA。 我这里以IDEA为例 打开 IDE 并选中 New Flutter Project。 选择 Flutter,验证 F…...

【微服务 Spring Cloud Alibaba】- Nacos 服务注册中心
目录 1. 什么是注册中心? 1.2 注册中心的作用 2. SpringBoot 整合 Nacos 实现服务注册中心 2.1 将服务注册到 Nacos 2.2 实现消费者 3. 服务列表各个参数的含义、作用以及应用场景 1. 什么是注册中心? 注册中心是微服务架构中的一个重要组件&…...
windows openssl安装和基本使用
OpenSSL使用 私钥和证书文件 openssl req -x509 -newkey rsa:4096 -keyout key.pem -out cert.pem -sha256 -days 365这是一个使用OpenSSL命令行工具生成自签名X.509证书的命令。通过执行该命令,您将生成一个4096位RSA密钥对,并使用该密钥对生成一个自…...

Qt Concurrent框架详解(QFuture、QFutureWatcher)
1.概述 Qt Concurrent是Qt提供的一个并发编程框架,用于简化多线程和并行计算的开发。它提供了一组易于使用的函数和类,可以方便地在多线程环境下处理并发任务。 有以下特点: 简单易用:Qt Concurrent提供了一组高级函数和类&…...
zip函数用法:解压与打包
解释 在 Python 中,zip 函数可以用于两种情况:打包(压缩)和解压(解包)。 1.打包(压缩): 当传递多个可迭代对象作为参数给 zip 函数时,它会将这些可迭代对象…...
这一份免费API接口集合,开发者必备
台风信息查询:提供西北太平洋及南海地区过去两年及当前年份所有编号台风的信息查询,包括台风实时位置、过去路径、预报路径及登陆信息等要素。未来7天生活指数:支持国内3400个城市以及国际4万个城市的天气指数数据,包括晨练、洗车…...
将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?
Otsu 是一种自动阈值化方法,用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理,能够自动确定一个阈值,将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...

Map相关知识
数据结构 二叉树 二叉树,顾名思义,每个节点最多有两个“叉”,也就是两个子节点,分别是左子 节点和右子节点。不过,二叉树并不要求每个节点都有两个子节点,有的节点只 有左子节点,有的节点只有…...
Spring AI与Spring Modulith核心技术解析
Spring AI核心架构解析 Spring AI(https://spring.io/projects/spring-ai)作为Spring生态中的AI集成框架,其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似,但特别为多语…...

学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”
2025年#高考 将在近日拉开帷幕,#AI 监考一度冲上热搜。当AI深度融入高考,#时间同步 不再是辅助功能,而是决定AI监考系统成败的“生命线”。 AI亮相2025高考,40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕,江西、…...
return this;返回的是谁
一个审批系统的示例来演示责任链模式的实现。假设公司需要处理不同金额的采购申请,不同级别的经理有不同的审批权限: // 抽象处理者:审批者 abstract class Approver {protected Approver successor; // 下一个处理者// 设置下一个处理者pub…...

【网络安全】开源系统getshell漏洞挖掘
审计过程: 在入口文件admin/index.php中: 用户可以通过m,c,a等参数控制加载的文件和方法,在app/system/entrance.php中存在重点代码: 当M_TYPE system并且M_MODULE include时,会设置常量PATH_OWN_FILE为PATH_APP.M_T…...

Python 实现 Web 静态服务器(HTTP 协议)
目录 一、在本地启动 HTTP 服务器1. Windows 下安装 node.js1)下载安装包2)配置环境变量3)安装镜像4)node.js 的常用命令 2. 安装 http-server 服务3. 使用 http-server 开启服务1)使用 http-server2)详解 …...

如何应对敏捷转型中的团队阻力
应对敏捷转型中的团队阻力需要明确沟通敏捷转型目的、提升团队参与感、提供充分的培训与支持、逐步推进敏捷实践、建立清晰的奖励和反馈机制。其中,明确沟通敏捷转型目的尤为关键,团队成员只有清晰理解转型背后的原因和利益,才能降低对变化的…...

[论文阅读]TrustRAG: Enhancing Robustness and Trustworthiness in RAG
TrustRAG: Enhancing Robustness and Trustworthiness in RAG [2501.00879] TrustRAG: Enhancing Robustness and Trustworthiness in Retrieval-Augmented Generation 代码:HuichiZhou/TrustRAG: Code for "TrustRAG: Enhancing Robustness and Trustworthin…...
Java并发编程实战 Day 11:并发设计模式
【Java并发编程实战 Day 11】并发设计模式 开篇 这是"Java并发编程实战"系列的第11天,今天我们聚焦于并发设计模式。并发设计模式是解决多线程环境下常见问题的经典解决方案,它们不仅提供了优雅的设计思路,还能显著提升系统的性能…...