当前位置: 首页 > news >正文

clusterprolifer go kegg msigdbr 富集分析应该使用哪个数据集,GO?KEGG?Hallmark?

关注微信:生信小博士 

5 Overview of enrichment analysis

Chapter 5 Overview of enrichment analysis | Biomedical Knowledge Mining using GOSemSim and clusterProfiler

5.1.2 Gene Ontology (GO)

Gene Ontology defines concepts/classes used to describe gene function, and relationships between these concepts. It classifies functions along three aspects:

  • MF: Molecular Function
    • molecular activities of gene products
  • CC: Cellular Component
    • where gene products are active
  • BP: Biological Process
    • pathways and larger processes made up of the activities of multiple gene products

GO terms are organized in a directed acyclic graph, where edges between terms represent parent-child relationship.

5.1.3 Kyoto Encyclopedia of Genes and Genomes (KEGG)

KEGG is a collection of manually drawn pathway maps representing molecular interaction and reaction networks. These pathways cover a wide range of biochemical processes that can be divided into 7 broad categories:

  1. Metabolism
  2. Genetic information processing
  3. Environmental information processing
  4. Cellular processes
  5. Organismal systems
  6. Human diseases
  7. Drug development.

5.1.4 Other gene sets

GO and KEGG are the most frequently used for functional analysis. They are typically the first choice because of their long-standing curation and availability for a wide range of species.

Other gene sets include but are not limited to Disease Ontology (DO), Disease Gene Network (DisGeNET), wikiPathways, Molecular Signatures Database (MSigDb).

富集分析的原理

Over Representation Analysis (ORA)和Gene Set Enrichment Analysis (GSEA)是用于分析基因表达数据的两种常见方法。ORA基于预定义的基因集,用超几何分布计算差异表达基因与该基因集中的基因数之间的显著性,适用于已知基因集和差异表达较大情况。GSEA考虑所有基因,根据基因在表型排序上的变化来寻找整个基因集是否显著富集,比ORA更适用于寻找微小但协调变化的基因集。GSEA还包括较新的leading edge analysis和core enriched genes等功能,能够帮助确定影响基因富集的关键基因。两种方法各有优缺点,在不同的研究问题中可以灵活选用。

5.2 原理1 Over Representation Analysis

Example: Suppose we have 17,980 genes detected in a Microarray study and 57 genes were differentially expressed. Among the differentially expressed genes, 28 are annotated to a gene set1.

d <- data.frame(gene.not.interest=c(2613, 15310), gene.in.interest=c(28, 29))
row.names(d) <- c("In_category", "not_in_category")
d

##                 gene.not.interest gene.in.interest
## In_category                  2613               28
## not_in_category             15310               29

Whether the overlap(s) of 25 genes are significantly over represented in the gene set can be assessed using a hypergeometric distribution. This corresponds to a one-sided version of Fisher’s exact test.

fisher.test(d, alternative = "greater")

 5.3 原理2 Gene Set Enrichment Analysis

ORA的方法,对于差异明显的对比结果较好,但是对于差异小的结果不好

A common approach to analyzing gene expression profiles is identifying differentially expressed genes that are deemed interesting. The ORA enrichment analysis is based on these differentially expressed genes. This approach will find genes where the difference is large and will fail where the difference is small, but evidenced in coordinated way in a set of related genes. Gene Set Enrichment Analysis (GSEA)(Subramanian et al. 2005) directly addresses this limitation. All genes can be used in GSEA; GSEA aggregates the per gene statistics across genes within a gene set, therefore making it possible to detect situations where all genes in a predefined set change in a small but coordinated way. This is important since it is likely that many relevant phenotypic differences are manifested by small but consistent changes in a set of genes.

Genes are ranked based on their phenotypes. Given apriori defined set of gene S (e.g., genes sharing the same DO category), the goal of GSEA is to determine whether the members of S are randomly distributed throughout the ranked gene list (L) or primarily found at the top or bottom.

There are three key elements of the GSEA method:

  • Calculation of an Enrichment Score.
    • The enrichment score (ES) represents the degree to which a set S is over-represented at the top or bottom of the ranked list L. The score is calculated by walking down the list L, increasing a running-sum statistic when we encounter a gene in S and decreasing when it is not encountered. The magnitude of the increment depends on the gene statistics (e.g., correlation of the gene with phenotype). The ES is the maximum deviation from zero encountered in the random walk; it corresponds to a weighted Kolmogorov-Smirnov(KS)-like statistic (Subramanian et al. 2005).
  • Esimation of Significance Level of ES.
    • The p-value of the ES is calculated using a permutation test. Specifically, we permute the gene labels of the gene list L and recompute the ES of the gene set for the permutated data, which generate a null distribution for the ES. The p-value of the observed ES is then calculated relative to this null distribution.
  • Adjustment for Multiple Hypothesis Testing.
    • When the entire gene sets are evaluated, the estimated significance level is adjusted to account for multiple hypothesis testing and also q-values are calculated for FDR control.

We implemented the GSEA algorithm proposed by Subramanian (Subramanian et al. 2005). Alexey Sergushichev implemented an algorithm for fast GSEA calculation in the fgsea (Korotkevich, Sukhov, and Sergushichev 2019) package. In our packages (clusterProfiler, DOSE, meshes and ReactomePA), users can use the GSEA algorithm implemented in DOSE or fgsea by specifying the parameter by="DOSE" or by="fgsea". By default, the fgsea method will be used since it is much more faster.

5.4 原理3 Leading edge analysis and core enriched genes

Leading edge analysis reports Tags to indicate the percentage of genes contributing to the enrichment score, List to indicate where in the list the enrichment score is attained and Signal for enrichment signal strength.

It would also be very interesting to get the core enriched genes that contribute to the enrichment. Our packages (clusterProfiler, DOSE, meshes and ReactomePA) support leading edge analysis and report core enriched genes in GSEA analysis.

详细的富集分析使用范围及其原理

1 GO 富集

GO comprises three orthogonal ontologies, i.e. molecular function (MF), biological process (BP), and cellular component (CC).

6.1 Supported organisms

GO analyses (groupGO()enrichGO() and gseGO()) support organisms that have an OrgDb object available (see also session 2.2).

If a user has GO annotation data (in a data.frame format with the first column as gene ID and the second column as GO ID), they can use the enricher() and GSEA() functions to perform an over-representation test and gene set enrichment analysis.

If the genes are annotated by direction annotation, they should also be annotated by their ancestor GO nodes (indirect annotation). If a user only has direct annotation, they can pass their annotation to the buildGOmap function, which will infer indirect annotation and generate a data.frame that is suitable for both enricher() and GSEA().

6.2 groupGo是 对基因的分类

In clusterProfiler, the groupGO() function is designed for gene classification based on GO distribution at a specific level. Here we use the dataset geneList provided by DOSE.

library(clusterProfiler)
data(geneList, package="DOSE")
gene <- names(geneList)[abs(geneList) > 2]# Entrez gene ID
head(gene)

## [1] "4312"  "8318"  "10874" "55143" "55388" "991"
ggo <- groupGO(gene     = gene,OrgDb    = org.Hs.eg.db,ont      = "CC",level    = 3,readable = TRUE)head(ggo)

6.3 enrichGO()是通过ORA对基因进行富集分析

The clusterProfiler package implements enrichGO() for gene ontology over-representation test.

ego <- enrichGO(gene          = gene,universe      = names(geneList),OrgDb         = org.Hs.eg.db,ont           = "CC",pAdjustMethod = "BH",pvalueCutoff  = 0.01,qvalueCutoff  = 0.05,readable      = TRUE)
head(ego)

gene.df <- bitr(gene, fromType = "ENTREZID",toType = c("ENSEMBL", "SYMBOL"),OrgDb = org.Hs.eg.db)ego2 <- enrichGO(gene         = gene.df$ENSEMBL,OrgDb         = org.Hs.eg.db,keyType       = 'ENSEMBL',ont           = "CC",pAdjustMethod = "BH",pvalueCutoff  = 0.01,qvalueCutoff  = 0.05)
head(ego2, 3)    

6.4   gseGO() 是对基因集进行gsea分析,而GSEA是对基因列表基因gsea分析??

The clusterProfiler package provides the gseGO() function for gene set enrichment analysis using gene ontology.

ego3 <- gseGO(geneList     = geneList,OrgDb        = org.Hs.eg.db,ont          = "CC",minGSSize    = 100,maxGSSize    = 500,pvalueCutoff = 0.05,verbose      = FALSE)

The format of input data, geneList, was documented in the FAQ. Beware that only gene Set size in [minGSSize, maxGSSize] will be tested.

A.1 How to prepare your own geneList

GSEA analysis requires a ranked gene list, which contains three features:

  • numeric vector: fold change or other type of numerical variable
  • named vector: every number has a name, the corresponding gene ID
  • sorted vector: number should be sorted in decreasing order

If you import your data from a csv file, the file should contains two columns, one for gene ID (no duplicated ID allowed) and another one for fold change. You can prepare your own geneList via the following command:

d = read.csv(your_csv_file)
## assume 1st column is ID
## 2nd column is FC## feature 1: numeric vector
geneList = d[,2]## feature 2: named vector
names(geneList) = as.character(d[,1])## feature 3: decreasing orde
geneList = sort(geneList, decreasing = TRUE)

7.2 KEGG pathway ORA

 Input ID type can be keggncbi-geneidncbi-proteinid or uniprot (see also session 16.1.2). Unlike enrichGO(), there is no readable parameter for enrichKEGG(). However, users can use the setReadable() function if there is an OrgDb available for the species.

data(geneList, package="DOSE")
gene <- names(geneList)[abs(geneList) > 2]kk <- enrichKEGG(gene         = gene,organism     = 'hsa',pvalueCutoff = 0.05)
head(kk)
##                ID                                                   Description
## hsa04110 hsa04110                                                    Cell cycle
## hsa04114 hsa04114                                                Oocyte meiosis
## hsa04218 hsa04218                                           Cellular senescence
## hsa04061 hsa04061 Viral protein interaction with cytokine and cytokine receptor
## hsa03320 hsa03320                                        PPAR signaling pathway
## hsa04914 hsa04914                       Progesterone-mediated oocyte maturation
##          GeneRatio  BgRatio       pvalue     p.adjust       qvalue
## hsa04110     11/94 126/8142 1.829412e-07 3.841764e-05 3.774365e-05
## hsa04114     10/94 131/8142 2.368439e-06 2.486861e-04 2.443231e-04
## hsa04218     10/94 156/8142 1.135672e-05 7.949704e-04 7.810235e-04
## hsa04061      8/94 100/8142 1.821466e-05 9.562698e-04 9.394931e-04
## hsa03320      7/94  75/8142 2.285993e-05 9.601169e-04 9.432728e-04
## hsa04914      7/94 102/8142 1.651911e-04 5.781690e-03 5.680256e-03
##                                                      geneID Count
## hsa04110 8318/991/9133/890/983/4085/7272/1111/891/4174/9232    11
## hsa04114    991/9133/983/4085/51806/6790/891/9232/3708/5241    10
## hsa04218     2305/4605/9133/890/983/51806/1111/891/776/3708    10
## hsa04061           3627/10563/6373/4283/6362/6355/9547/1524     8
## hsa03320                 4312/9415/9370/5105/2167/3158/5346     7
## hsa04914                    9133/890/983/4085/6790/891/5241     7

7.3 KEGG pathway GSEA

kk2 <- gseKEGG(geneList     = geneList,organism     = 'hsa',minGSSize    = 120,pvalueCutoff = 0.05,verbose      = FALSE)
head(kk2)

##                ID                              Description setSize
## hsa05169 hsa05169             Epstein-Barr virus infection     193
## hsa04613 hsa04613  Neutrophil extracellular trap formation     130
## hsa05166 hsa05166  Human T-cell leukemia virus 1 infection     202
## hsa04510 hsa04510                           Focal adhesion     190
## hsa04218 hsa04218                      Cellular senescence     141
## hsa05170 hsa05170 Human immunodeficiency virus 1 infection     189
##          enrichmentScore       NES       pvalue     p.adjust      qvalues rank
## hsa05169       0.4335010  1.962039 5.505487e-08 4.239225e-06 2.839672e-06 2820
## hsa04613       0.4496569  1.934454 6.345081e-06 2.442856e-04 1.636363e-04 2575
## hsa05166       0.3893613  1.755469 1.357530e-05 3.484327e-04 2.333999e-04 1955
## hsa04510      -0.4169068 -1.691234 2.771385e-05 5.334917e-04 3.573629e-04 2183
## hsa04218       0.4115945  1.783044 5.168200e-05 7.959028e-04 5.331406e-04 1155
## hsa05170       0.3711150  1.677643 1.118012e-04 1.229814e-03 8.237986e-04 3178
##                            leading_edge
## hsa05169 tags=39%, list=23%, signal=31%
## hsa04613 tags=37%, list=21%, signal=30%
## hsa05166 tags=26%, list=16%, signal=22%
## hsa04510 tags=27%, list=17%, signal=22%
## hsa04218  tags=17%, list=9%, signal=16%
## hsa05170 tags=38%, list=25%, signal=29%
##                                                                                                                                                                                                                                                                                                                                                                                core_enrichment
## hsa05169 3627/890/6890/9636/898/9134/6502/6772/3126/3112/4609/917/5709/1869/3654/919/915/4067/4938/864/4940/5713/5336/11047/3066/54205/1871/578/1019/637/916/3383/4939/10213/23586/4793/5603/7979/7128/6891/930/5714/3452/6850/5702/4794/7124/3569/7097/5708/2208/8772/3119/5704/7186/5971/3135/1380/958/5610/4792/10018/8819/3134/10379/9641/1147/5718/6300/3109/811/5606/2923/3108/5707/1432
## hsa04613                                                                                                                                      820/366/51311/64581/3015/85236/55506/8970/8357/1535/2359/5336/4688/92815/3066/8336/292/1991/3689/8345/5603/4689/5880/10105/1184/6404/3018/6850/5604/3014/7097/1378/8290/1536/834/5605/1183/728/2215/8335/5594/9734/3674/5578/5582/7417/8331/6300
## hsa05166                                                                                                                      991/9133/890/4085/7850/1111/9232/8061/701/9700/898/4316/9134/3932/3559/3126/3112/4609/3561/917/1869/1029/915/114/2005/5902/55697/1871/1031/2224/292/1019/3689/916/3383/11200/706/3600/6513/3601/468/5604/7124/1030/3569/4049/4055/10393/3119/5901/5971/1959/3135
## hsa04510                                                                                                                   5595/5228/7424/1499/4636/83660/7059/5295/1288/23396/3910/3371/3082/1291/394/3791/7450/596/3685/1280/3675/595/2318/3912/1793/1278/1277/1293/10398/55742/2317/7058/25759/56034/3693/3480/5159/857/1292/3908/3909/63923/3913/1287/3679/7060/3479/10451/80310/1311/1101
## hsa04218                                                                                                                                                                                                                                                                 2305/4605/9133/890/983/51806/1111/891/993/3576/1978/898/9134/4609/1869/1029/22808/1871/5499/91860/292/1019/11200/1875
## hsa05170                   9133/9582/983/51806/1111/891/6890/200315/917/3654/919/915/5336/54205/91860/578/995/25939/637/1234/916/5603/2792/5880/6891/6921/3452/5604/7124/9978/7097/7852/8772/1174/7186/3135/164/60489/2787/356/7133/5605/27350/6199/1642/5594/4792/3134/5578/4893/8454/5582/2786/1147/3984/6300/200316/811/5606/2923/4775/162/1432/2784/836/5747/5058/3106/2770/5534/5579/4615

7.4 KEGG module ORA. 这里的module指的是msigdb种收集的其他kegg内容,共有

KEGG Module is a collection of manually defined function units. In some situation, KEGG Modules have a more straightforward interpretation.

mkk <- enrichMKEGG(gene = gene,organism = 'hsa',pvalueCutoff = 1,qvalueCutoff = 1)
head(mkk)       

3.KEGG 分类备注

KEGG Pathway可以进行分类汇总。

在KEGG官网(KEGG PATHWAY Database)中,将通路分成了7类:

1. Metabolism (代谢)

2. Genetic Information Processing (遗传信息处理)

3. Environmental Information Processing (环境信息处理)

4. Cellular Processes (细胞过程)

5. Organismal Systems (生物系统)

6. Human Diseases (人类疾病)

7. Drug Development (药物开发)

做出一个分类汇总图,这样可以在更上一层级研究pathway。主要应用于特殊物种的denovo测序注释,也可以应用于我们常规的pathway富集分析。

7.5 KEGG module gene set enrichment analysis

mkk2 <- gseMKEGG(geneList = geneList,organism = 'hsa',pvalueCutoff = 1)
head(mkk2)

通路可视化

library("pathview")
hsa04110 <- pathview(gene.data  = geneList,
                     pathway.id = "hsa04110",
                     species    = "hsa",
                     limit      = list(gene=max(abs(geneList)), cpd=1))

browseKEGG(kk, 'hsa04110')

 

相关文章:

clusterprolifer go kegg msigdbr 富集分析应该使用哪个数据集,GO?KEGG?Hallmark?

关注微信&#xff1a;生信小博士 5 Overview of enrichment analysis Chapter 5 Overview of enrichment analysis | Biomedical Knowledge Mining using GOSemSim and clusterProfiler 5.1.2 Gene Ontology (GO) Gene Ontology defines concepts/classes used to describ…...

Linux学习笔记1-入门

前言&#xff1a;之前的基于单片机的闭环控制步进电机项目其实已经完成了&#xff0c;但很多时间都花在调试和生产上&#xff0c;实在没时间去做总结笔记&#xff0c;现在又开始做新项目了&#xff0c;从单片机到了Linux&#xff0c;想用这个平台来督促自己继续学习&#xff0c…...

怎样更有效的运营Etsy店铺?

大家都知道&#xff0c;Etsy作为一个重要的电商平台&#xff0c;给很多人提供了不少机会。但是如何取得etsy店铺运营的成功呢&#xff1f;第一步就是选好辅助工具。 什么是指纹浏览器&#xff1f; VMLogin指纹浏览器(www.vmlogin.com.cn) 是一种工具&#xff0c;通过伪装用户…...

Vue 项目中如何使用Bootstrap5(简单易懂)

Vue 项目中如何使用Bootstrap5&#xff08;简单易懂&#xff09; 安装在 src/main.js 文件下引入包在vue文件中使用 Bootstrap官网&#xff08;中文&#xff09;&#xff1a;https://www.bootcss.com/ Bootstrap5文档&#xff1a;https://v5.bootcss.com/docs/getting-started/…...

k8s 资源预留

KUBERNETES资源管理之–资源预留 Kubernetes 的节点可以按照 Capacity 调度。node节点本身除了运行不少驱动 OS 和 Kubernetes 的系统守护进程&#xff0c;默认情况下 pod 能够使用节点全部可用容量&#xff0c; 除非为这些系统守护进程留出资源&#xff0c;否则它们将与 pod 争…...

微信小程序自定义弹窗阻止滑动冒泡catchtouchmove之后弹窗内部内容无法滑动

自定义弹窗 如图所示&#xff1a; 自定义弹窗内部有带滚动条的盒子区域 问题&#xff1a; 在盒子上滑动&#xff0c;页面如果超出一屏的话&#xff0c;也会跟着一起上下滚动 解决方案&#xff1a;给自定义弹窗 添加 catchtouchmove 事件&#xff0c;阻止冒泡即可 网上不少…...

Linux 命令速查

Network ping ping -c 3 -i 0.01 127.0.0.1 # -c 指定次数 # -i 指定时间间隔 日志 一般存放位置&#xff1a; /var/log&#xff0c;包含&#xff1a;系统连接日志 进程统计 错误日志 常见日志文件说明 日志功能access-logweb服务访问日志acct/pacct用户命令btmp记录失…...

第22期 | GPTSecurity周报

GPTSecurity是一个涵盖了前沿学术研究和实践经验分享的社区&#xff0c;集成了生成预训练 Transformer&#xff08;GPT&#xff09;、人工智能生成内容&#xff08;AIGC&#xff09;以及大型语言模型&#xff08;LLM&#xff09;等安全领域应用的知识。在这里&#xff0c;您可以…...

JavaScript前端 console 控制台详细解析与代码实例

JavaScript Console&#xff08;控制台&#xff09;是一个重要的工具&#xff0c;可以用于调试和测试 JavaScript 代码。在浏览器中&#xff0c;你可以使用控制台来查看 JavaScript 输出、测试代码、调试错误等。在本文中&#xff0c;我们将详细介绍控制台的常用功能和代码实例…...

idea中启动多例项目配置

多实例启动 日常本地开发微服务项目时&#xff0c;博主想要验证一下网关的负载均衡以及感知服务上下线能力时&#xff0c;需要用到多实例启动。 那么什么是多实例启动嘞&#xff1f;简单说就是能在本地同时启动多个同一服务。打个比方项目中有一个 MobileApplication 服务&…...

Activiti7流程结束监听事件中,抛出的异常无法被spring全局异常捕捉

ProcessRuntimeEventListener activiti7中&#xff0c;提供了ProcessRuntimeEventListener监听器&#xff0c;用于监听流程实例的结束事件 /*** 流程完成监听器*/ Slf4j Component public class ProcessCompleteListener implements ProcessRuntimeEventListener<ProcessC…...

Android 默认关闭自动旋转屏幕功能

Android 默认关闭自动旋转屏幕功能 接到客户邮件想要默认关闭设备的自动旋转屏幕功能&#xff0c;具体修改参照如下&#xff1a; /vendor/mediatek/proprietary/packages/apps/SettingsProvider/res/values/defaults.xml - <bool name"def_accelerometer_rotati…...

软文推广方案,媒介盒子分享

作为企业宣传的手段&#xff0c;它能用较低的成本获得较好的宣传效果&#xff0c;但有许多企业在进行软文推广时并不起效&#xff0c;这是因为没掌握好方法。今天媒介盒子就来告诉大家&#xff0c;通用的软文推广方案。 一、 明确推广目标以及受众 明确软文推广的目标有助于明…...

CSDN热榜分析6:将实时爬取的热榜数据导入sqlite

文章目录 初始化数据库接口更改数据库写入 初始化数据库 引入数据库的目的不止是为了存储&#xff0c;更多地也是为了便于查询&#xff0c;否则也没必要用一个Text控件来展示信息了。 所以一个正常的工作逻辑是&#xff0c;一打开热榜分析系统&#xff0c;也就同步打开数据库…...

2023年11月1日,Google全新域名来袭:.ing域名现已问世!

2023年11月1日(Oct31,2023美国与中国时差)Google宣布&#xff0c;正式推出.ing域名&#xff0c;这是一种新的顶级域名&#xff0c;旨在为用户提供更多的选择和创意。.ing域名是由Google和国际互联网名称与数字地址分配机构&#xff08;ICANN&#xff09;合作开发的&#xff0c;…...

【设计模式】第22节:行为型模式之“状态模式”

一、简介 状态模式一般用来实现状态机&#xff0c;而状态机常用在游戏、工作流引擎等系统开发中。不过&#xff0c;状态机的实现方式有多种&#xff0c;除了状态模式&#xff0c;比较常用的还有分支逻辑法和查表法。该模式允许对象内部状态改变使改变它的行为。 二、适用场景…...

JavaSE21——ArrayList

集合框架 ArrayList 一、概述 ArrayList 类是一个可以动态修改的数组&#xff0c;与普通数组的区别就是它是没有固定大小的限制&#xff0c;我们可以添加或删除元素。 ArrayList 继承了 AbstractList &#xff0c;并实现了 List 接口。 ArrayList中的元素可以通过索引访问…...

找质数(枚举 埃氏筛 线性筛)

输入一个数&#xff0c;返回小于等于这个数的质数。 枚举法&#xff1a; public static int countPrimes(int n) {int cnt0;for(int i2;i<n;i) {if(prime(i))cnt;}return cnt;}private static boolean prime(int x) {for(int i2;i*i<x;i){if(x%i0)return false;}return …...

第十二章 ObjectScript 系统标志和限定符 (qspec) - 标志

文章目录 第十二章 ObjectScript 系统标志和限定符 (qspec) - 标志 示例取消Negation标志Flags 第十二章 ObjectScript 系统标志和限定符 (qspec) - 标志 类库中的许多方法都接受 qspec 参数&#xff0c;通过该参数&#xff0c;可以控制将外部源导入 IRIS、控制代码的编译方式以…...

解决Windows Server 2012 由于没有远程桌面授权服务器可以提供需求可证

刚开始提示 之后就登录不了 &#xff08;如下图提示&#xff09; 由于windows server 2012 R2 安装了 远程桌面角色&#xff0c;但是这个角色是120天免费的&#xff0c;需要购买授权的。解决方法是取消/删除这个角色&#xff0c;就可以恢复正常的远程 一直下一步 远程桌面服…...

深入剖析AI大模型:大模型时代的 Prompt 工程全解析

今天聊的内容&#xff0c;我认为是AI开发里面非常重要的内容。它在AI开发里无处不在&#xff0c;当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗"&#xff0c;或者让翻译模型 "将这段合同翻译成商务日语" 时&#xff0c;输入的这句话就是 Prompt。…...

【杂谈】-递归进化:人工智能的自我改进与监管挑战

递归进化&#xff1a;人工智能的自我改进与监管挑战 文章目录 递归进化&#xff1a;人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管&#xff1f;3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...

(十)学生端搭建

本次旨在将之前的已完成的部分功能进行拼装到学生端&#xff0c;同时完善学生端的构建。本次工作主要包括&#xff1a; 1.学生端整体界面布局 2.模拟考场与部分个人画像流程的串联 3.整体学生端逻辑 一、学生端 在主界面可以选择自己的用户角色 选择学生则进入学生登录界面…...

无法与IP建立连接,未能下载VSCode服务器

如题&#xff0c;在远程连接服务器的时候突然遇到了这个提示。 查阅了一圈&#xff0c;发现是VSCode版本自动更新惹的祸&#xff01;&#xff01;&#xff01; 在VSCode的帮助->关于这里发现前几天VSCode自动更新了&#xff0c;我的版本号变成了1.100.3 才导致了远程连接出…...

服务器硬防的应用场景都有哪些?

服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式&#xff0c;避免服务器受到各种恶意攻击和网络威胁&#xff0c;那么&#xff0c;服务器硬防通常都会应用在哪些场景当中呢&#xff1f; 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...

智能在线客服平台:数字化时代企业连接用户的 AI 中枢

随着互联网技术的飞速发展&#xff0c;消费者期望能够随时随地与企业进行交流。在线客服平台作为连接企业与客户的重要桥梁&#xff0c;不仅优化了客户体验&#xff0c;还提升了企业的服务效率和市场竞争力。本文将探讨在线客服平台的重要性、技术进展、实际应用&#xff0c;并…...

SpringTask-03.入门案例

一.入门案例 启动类&#xff1a; package com.sky;import lombok.extern.slf4j.Slf4j; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; import org.springframework.cache.annotation.EnableCach…...

精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南

精益数据分析&#xff08;97/126&#xff09;&#xff1a;邮件营销与用户参与度的关键指标优化指南 在数字化营销时代&#xff0c;邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天&#xff0c;我们将深入解析邮件打开率、网站可用性、页面参与时…...

深度学习习题2

1.如果增加神经网络的宽度&#xff0c;精确度会增加到一个特定阈值后&#xff0c;便开始降低。造成这一现象的可能原因是什么&#xff1f; A、即使增加卷积核的数量&#xff0c;只有少部分的核会被用作预测 B、当卷积核数量增加时&#xff0c;神经网络的预测能力会降低 C、当卷…...

AGain DB和倍数增益的关系

我在设置一款索尼CMOS芯片时&#xff0c;Again增益0db变化为6DB&#xff0c;画面的变化只有2倍DN的增益&#xff0c;比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析&#xff1a; 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...