YOLO算法改进6【中阶改进篇】:depthwise separable convolution轻量化C3
常规卷积操作
对于一张5×5像素、三通道(shape为5×5×3),经过3×3卷积核的卷积层(假设输出通道数为4,则卷积核shape为3×3×3×4,最终输出4个Feature Map,如果有same padding则尺寸与输入层相同(5×5),如果没有则为尺寸变为3×3
深度可分离卷积
- 逐通道卷积Depthwise Convolution
Depthwise Convolution的一个卷积核负责一个通道,一个通道只被一个卷积核卷积。
一张5×5像素、三通道彩色输入图片(shape为5×5×3),Depthwise Convolution首先经过第一次卷积运算,DW完全是在二维平面内进行。卷积核的数量与上一层的通道数相同(通道和卷积核一一对应)。所以一个三通道的图像经过运算后生成了3个Feature map(如果有same padding则尺寸与输入层相同为5×5),如下图所示。
Depthwise Convolution完成后的Feature map数量与输入层的通道数相同,无法扩展Feature map。而且这种运算对输入层的每个通道独立进行卷积运算,没有有效的利用不同通道在相同空间位置上的feature信息。因此需要Pointwise Convolution来将这些Feature map进行组合生成新的Feature map
- 逐点卷积Pointwise Convolution
Pointwise Convolution的运算与常规卷积运算非常相似,它的卷积核的尺寸为 1×1×M,M为上一层的通道数。所以这里的卷积运算会将上一步的map在深度方向上进行加权组合,生成新的Feature map。有几个卷积核就有几个输出Feature map
经过Pointwise Convolution之后,同样输出了4张Feature map,与常规卷积的输出维度相同
YOLOV5s中Conv
、BottleNeck
、C3
的代码如下:
原始common.py配置
class Conv(nn.Module):# Standard convolution 通用卷积模块,包括1卷积1BN1激活,激活默认SiLU,可用变量指定,不激活时用nn.Identity()占位,直接返回输入def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groupssuper(Conv, self).__init__()self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)self.bn = nn.BatchNorm2d(c2)self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())def forward(self, x):return self.act(self.bn(self.conv(x)))def fuseforward(self, x):return self.act(self.conv(x))class Bottleneck(nn.Module):# Standard bottleneck 残差块def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansionsuper(Bottleneck, self).__init__()c_ = int(c2 * e) # hidden channelsself.cv1 = Conv(c1, c_, 1, 1)self.cv2 = Conv(c_, c2, 3, 1, g=g)self.add = shortcut and c1 == c2def forward(self, x): # 如果shortcut并且输入输出通道相同则跳层相加return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))class C3(nn.Module): # CSP Bottleneck with 3 convolutionsdef __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansionsuper(C3, self).__init__()c_ = int(c2 * e) # hidden channelsself.cv1 = Conv(c1, c_, 1, 1)self.cv2 = Conv(c1, c_, 1, 1)self.cv3 = Conv(2 * c_, c2, 1) # act=FReLU(c2)self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)]) # n个残差组件(Bottleneck)# self.m = nn.Sequential(*[CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)])def forward(self, x):return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))
1.轻量化C3
模块
在models/common.py文件中按以下思路修改代码:
轻量化C3的改进思路是将原C3模块中使用的普通卷积,全部替换为深度可分离卷积,其余结构不变,改进后的DP_Conv、DP_BottleNeck、DP_C3的代码如下:
class DP_Conv(nn.Module):def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groupssuper(DP_Conv, self).__init__()self.conv1 = nn.Conv2d(c1, c1, kernel_size=3, stride=1, padding=1, groups=c1)self.conv2 = nn.Conv2d(c1, c2, kernel_size=1, stride=s)self.bn = nn.BatchNorm2d(c2)self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())def forward(self, x):return self.act(self.bn(self.conv2(self.conv1(x))))def fuseforward(self, x):return self.act(self.conv2(self.conv1(x)))class DP_Bottleneck(nn.Module):def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansionsuper(DP_Bottleneck, self).__init__()c_ = int(c2 * e) # hidden channelsself.cv1 = DP_Conv(c1, c_, 1)self.cv2 = DP_Conv(c_, c2, 1)self.add = shortcut and c1 == c2def forward(self, x): # 如果shortcut并且输入输出通道相同则跳层相加return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))class DP_C3(nn.Module):# CSP Bottleneck with 3 convolutionsdef __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansionsuper(DP_C3, self).__init__()c_ = int(c2 * e) # hidden channelsself.cv1 = DP_Conv(c1, c_, 1)self.cv2 = DP_Conv(c1, c_, 1)self.cv3 = DP_Conv(2 * c_, c2, 1) # act=FReLU(c2)self.m = nn.Sequential(*[DP_Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)]) # n个残差组件(Bottleneck)# self.m = nn.Sequential(*[CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)])def forward(self, x):return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))
2.添加DP_C3.yaml文件
添加至/models/文件中
# parameters
nc: 80 # number of classes
depth_multiple: 0.33 # model depth multiple
width_multiple: 0.50 # layer channel multiple# anchors
anchors:- [10,13, 16,30, 33,23] # P3/8- [30,61, 62,45, 59,119] # P4/16- [116,90, 156,198, 373,326] # P5/32# YOLOv5 backbone
backbone:# [from, number, module, args][[-1, 1, DP_Conv, [64, 6, 2, 2]], # 0-P1/2[-1, 1, DP_Conv, [128, 3, 2]], # 1-P2/4[-1, 3, DP_C3, [128]],[-1, 1, DP_Conv, [256, 3, 2]], # 3-P3/8[-1, 9, DP_C3, [256]],[-1, 1, DP_Conv, [512, 3, 2]], # 5-P4/16[-1, 9, DP_C3, [512]],[-1, 1, DP_Conv, [1024, 3, 2]], # 7-P5/32[-1, 3, DP_C3, [1024]],[-1, 1, SPPF, [1024, 5]], # 9]# YOLOv5 head
head:[[-1, 1, DP_Conv, [512, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 6], 1, Concat, [1]], # cat backbone P4 # PANet是add, yolov5是concat[-1, 3, C3, [512, False]], # 13[-1, 1, DP_Conv, [256, 1,1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 4], 1, Concat, [1]], # cat backbone P3[-1, 3, C3, [256, False]], # 17 (P3/8-small)[-1, 1, DP_Conv, [256, 3,2]],[[-1, 14], 1, Concat, [1]], # cat head P4[-1, 3, C3, [512, False]], # 20 (P4/16-medium)[-1, 1, DP_Conv, [512, 3, 2]],[[-1, 10], 1, Concat, [1]], # cat head P5[-1, 3, C3, [1024, False]], # 23 (P5/32-large)[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) 必须在最后一层, 原代码很多默认了Detect是最后, 并没有全改]
3.yolo.py配置
找到 models/yolo.py
文件中 parse_model()
类 for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']):
,在列表中添加DP_Conv
、DP_BottleNeck
、DP_C3
,这样可以获得我们要传入的参数。
if m in {Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,BottleneckCSP, C3, C3TR, C3SPP, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x,Attention, CondConv, DP_Conv, DP_BottleNeck, DP_C3}:c1, c2 = ch[f], args[0]if c2 != no: # if not outputc2 = make_divisible(c2 * gw, 8)args = [c1, c2, *args[1:]]if m in {BottleneckCSP, C3, C3TR, C3Ghost, C3x, DP_C3}:args.insert(2, n) # number of repeatsn = 1elif m is nn.BatchNorm2d:args = [ch[f]]elif m is Concat:c2 = sum(ch[x] for x in f)# TODO: channel, gw, gd
4.训练模型
python train.py --cfg DP_C3.yaml
相关文章:

YOLO算法改进6【中阶改进篇】:depthwise separable convolution轻量化C3
常规卷积操作 对于一张55像素、三通道(shape为553),经过33卷积核的卷积层(假设输出通道数为4,则卷积核shape为3334,最终输出4个Feature Map,如果有same padding则尺寸与输入层相同(…...

自定义类型枚举
目录 枚举类型枚举类型的声明扩展枚举类型的优点枚举的优点 感谢各位大佬对我的支持,如果我的文章对你有用,欢迎点击以下链接 🐒🐒🐒 个人主页 🥸🥸🥸 C语言 🐿️🐿️🐿…...

PHP foreach 循环跳过本次循环
$a [[id>1],[id>2],[id>3],[id>4],[id>5],[id>6],[id>7],[id>18],];foreach($a as $v){if($v[id] 5){continue;}$b[] $v[id];}return show_data(,$b); 结果:...

lua-web-utils库
lua--导入所需的库local web_utilsrequire("lua-web-utils")--定义要下载的URLlocal url"https://jshk.com.cn/"--定义代理服务器的主机名和端口号local proxy_port8000--使用web_utils的download函数下载URLlocal file_pathweb_utils.download(url,proxy_…...

大数据毕业设计选题推荐-热门旅游景点数据分析-Hadoop-Spark-Hive
✨作者主页:IT研究室✨ 个人简介:曾从事计算机专业培训教学,擅长Java、Python、微信小程序、Golang、安卓Android等项目实战。接项目定制开发、代码讲解、答辩教学、文档编写、降重等。 ☑文末获取源码☑ 精彩专栏推荐⬇⬇⬇ Java项目 Python…...

Oracle-执行计划
执行计划生成的几种方式 1. EXPLAIN FOR 语法: EXPLAIN PLAN FOR SQL语句SELECT * FROM TABLE(dbms_xplan.display());优点: 无需真正执行SQL 缺点: 没有输出相关的统计信息,例如产生了多少逻辑读、物理读、递归调用等情况无法判…...

Pytho入门教程之Python运行的三种方式
文章目录 一、交互式编程二、脚本式编程三、方式三关于Python技术储备一、Python所有方向的学习路线二、Python基础学习视频三、精品Python学习书籍四、Python工具包项目源码合集①Python工具包②Python实战案例③Python小游戏源码五、面试资料六、Python兼职渠道 一、交互式编…...

如何修改docker容器中的MySQL数据库的密码?
查看容器中MySQL的ID:docker ps | grep mysql进入容器:docker exec -it {容器ID} /bin/bash调整MySQL配置文件,设置跳过权限控制:echo "skip-grant-tables" >> /etc/mysql/conf.d/docker.cnf 警 告:这…...

JOSEF约瑟 数显三相电压继电器 HJY-931A/D 导轨安装
名称:数字交流三相电压继电器型号:HJY-93系列品牌:JOSEF约瑟电压整定范围:10~450VAC额定电压:200、400VAC功率消耗:≤5W HJY系列 数字交流三相电压继电器 系列型号 HJY-931A/D数字式交流三相电压继电器&am…...

第6章_多表查询
文章目录 多表查询概述1 一个案例引发的多表连接1.1 案例说明1.2 笛卡尔积理解演示代码 2 多表查询分类讲解2.1 等值连接 & 非等值连接2.1.1 等值连接2.1.2 非等值连接 自连接 & 非自连接内连接与外连接演示代码 3 SQL99语法实现多表查询3.1 基本语法3.2 内连接&#x…...

吴恩达《机器学习》4-1->4-5:多变量线性回归
一、引入多维特征 在多维特征中,我们考虑的不再是单一的特征,而是一组特征,例如房价模型中可能包括房间数、楼层等多个特征。这些特征将组成一个向量,表示为(𝑥₁, 𝑥₂, . . . , 𝑥ₙ)&#x…...

搜索引擎系统简要分析
目录 一、搜索引擎简单介绍 二、搜索引擎整体架构和工作过程 (一)整体分析 (二)爬虫系统 三个基本点 爬虫系统的工作流程 关键考虑因素和挑战 (三)索引系统 网页处理阶段 预处理阶段 反作弊分析…...

蓝桥杯(C++ 扫雷)
题目: 思想: 1、遍历每个点是否有地雷,有地雷则直接返回为9,无地雷则遍历该点的周围八个点,计数一共有多少个地雷,则返回该数。 代码: #include<iostream> using namespace std; int g[…...

LuatOS-SOC接口文档(air780E)--mobile - 蜂窝网络
示例 -- 简单演示log.info("imei", mobile.imei()) log.info("imsi", mobile.imsi()) local sn mobile.sn() if sn thenlog.info("sn", sn:toHex()) end log.info("muid", mobile.muid()) log.info("iccid", mobile.icc…...

c++创建函数对象的不同方式
在C中,创建任何一个对象(即使我们创建的是一个没有任何成员变量的对象)时,需要占用一定的内存空间。 应用程序会将可用的内存(排除源代码运行的内存等)分出两个部分:栈(stack&#x…...

python实现从字符串中识别出省市区信息
从字符串中识别出省市区的信息分别存储,是我们经常会碰到的问题。如果用分词的方法去匹配获取比较麻烦,cpca包提供了便捷的调用函数transform。只要把含省市区的信息放进去,即可返回标准的含省市区的数据框。 本文详细阐述如何安装cpca包、transform函数参数定义,以及…...

GCN火车票识别项目 P1 火车票识别项目介绍 Pytorch LSTM/GCN
从本节开始,我将带大家完成一个深度学习项目:用图卷积神经网络(GCN),实现一个「火车票文字信息提取」的项目,由于火车票上每个节点文字不是等长的,所以还需要添加一个前置的 LSTM 来提取句子特征。 课前说明 1、这是…...

shell script 的默认变量$0,$1,$2...,参数偏移的shift
简单来说,在scirpt脚本里面,$0表示文件名,$1表示第一个参数,以此类推,还有 $# 后面接参数的个数 $ 代表"$1","$2","$3",每个都是独立的,用双引号括起来 $* 代…...

2023年【危险化学品经营单位安全管理人员】复审考试及危险化学品经营单位安全管理人员模拟考试题库
题库来源:安全生产模拟考试一点通公众号小程序 危险化学品经营单位安全管理人员复审考试考前必练!安全生产模拟考试一点通每个月更新危险化学品经营单位安全管理人员模拟考试题库题目及答案!多做几遍,其实通过危险化学品经营单位…...

Java 正则表达式重复匹配篇
重复匹配 * 可以匹配任意个字符,包括0个字符。 可以匹配至少一个字符。? 可以匹配0个或一个字符。{n} 可以精确指定 n 个字符。{n,m} 可以精确匹配 n-m 个字符。你可以是 0 。 匹配任意个字符 匹配 D 开头,后面是任意数字的字符, String …...

0009Java安卓程序设计-ssm基于android手机设计并实现在线点单系统APP
文章目录 **摘要**目 录系统实现开发环境 编程技术交流、源码分享、模板分享、网课教程 🐧裙:776871563 摘要 网络的广泛应用给生活带来了十分的便利。所以把在线点单管理与现在网络相结合,利用java技术建设在线点单系统,实现餐…...

react_14
动态路由 路由分成两部分: 静态路由,固定的部分,如主页、404、login 这几个页面 动态路由,变化的部分,经常是主页内的嵌套路由,比如 Student、Teacher 这些 动态路由应该是根据用户登录后,根…...

批量导出 PPT的备注到一个txt文本中
使用宏(Macro)功能(适用于 Windows 平台) 打开 PowerPoint 幻灯片,并确保每个幻灯片上都添加了备注。 启用"开发人员"选项卡: 如果您已经看到 PowerPoint 的"开发人员"选项卡&#x…...

文本内容转换成语音播放的工具:Speech Mac
Speech Mac版是一款适用于Mac电脑的语音合成工具。它将macOS语音合成器的所有功能整合到一个易于使用的界面中。通过Speech Mac版,用户可以选择40多种声音和语言,方便地将文本转换为语音。用户可以将文本拖放或粘贴到Speech中,并随时更改语音…...

运维知识点-MySQL从小白到入土
MySQL从小白到入土 mysql 服务器安装windows mysql 服务漏洞复现-mysql jdbc反序列化-权限绕过 mysql 服务器安装 https://dev.mysql.com/downloads/mysql/https://www.cnblogs.com/xiaostudy/p/12262804.html 点餐小程序腾讯云服务器安装mysql8 windows mysql 服务 net sta…...

【蓝桥杯基础题】门牌制作
👑专栏内容:蓝桥杯刷题⛪个人主页:子夜的星的主页💕座右铭:前路未远,步履不停目录 一、题目描述二、题目分析三、代码汇总1、C++代码2、Java 代码四、总结1、枚举思想2、取余判断每位数字一、题目描述 题目链接:门牌制作 小蓝要为一条街的住户制作门牌号。这条街一共…...

MyBatis底层原理(小白版本)
!特别声明!:这篇文章只是单纯用来应对面试,并不能用来当作深度解析的文章来看。本人才疏学浅,文章也可能有不对的地方,望指正。 此源码分析使用的是Java11 基本使用流程: String resource &q…...

水经微图Web版从入门到精通
我们在《47GB水经微图从入门到精通视频教程》和《163M水经微图从入门到精通文档教程》中,为大家分享了水经微图PC版的教程。 这里,我们再为大家分享水经微图Web版的文档教程。 水经微图Web版教程 水经微图Web版的教程,主要包括基础名词、…...

IntelliJ IDEA 2023 最新版如何试用?IntelliJ IDEA 2023最新版试用方法及验证ja-netfilter配置成功提示
🌷🍁 博主猫头虎 带您 Go to New World.✨🍁 🦄 博客首页——猫头虎的博客🎐 🐳《面试题大全专栏》 文章图文并茂🦕生动形象🦖简单易学!欢迎大家来踩踩~🌺 &a…...

LeetCode541. Reverse String II
文章目录 一、题目二、题解 一、题目 541. Reverse String II Given a string s and an integer k, reverse the first k characters for every 2k characters counting from the start of the string. If there are fewer than k characters left, reverse all of them. If…...