【数据挖掘实战】——应用系统负载分析与容量预测(ARIMA模型)

项目地址:Datamining_project: 数据挖掘实战项目代码
目录
一、背景和挖掘目标
1、问题背景
2、传统方法的不足
2、原始数据
3、挖掘目标
二、分析方法与过程
1、初步分析
2、总体流程
第一步:数据抽取
第二步:探索分析
第三步:数据的预处理
3、构造容量预测模型
三、总结和思考
一、背景和挖掘目标
1、问题背景
- 应用系统的负载率:通过对一段时间内软硬件性能的运行状况进行综合评分而获得。
- 负载率趋势:通过系统的当前负载率与历史平均负载率进行比较。
2、传统方法的不足
- 磁盘容量的情况没有提供预测的功能。只有当容量将要被耗尽时,会有告警提示。如果是告警服务器的磁盘容量被耗尽,此种情况下,系统即使出现故障,也不会有告警提示。
- 不能提前知道系统负载的程度,只有当系统故障时,通过接受告警才得知。并且当系统真正故障的时,告警的发出大多数情况下会有一定的延迟。
2、原始数据
- 性能属性说明:针对采集的性能信息,对每个属性进行相应说明。

- 磁盘数据:包含应用系统、磁盘基本信息等。

3、挖掘目标
- 针对历史磁盘数据,采用数据挖掘的方法,预测应用系统服务器磁盘已使用空间大小;
- 根据用户需求设置不同的预警等级,将预测值与容量值进行比较,对其结果进行预警判断,为系统管理员提供定制化的预警提示;
二、分析方法与过程
1、初步分析
- 应用系统出现故障通常不是突然瘫痪造成的(除非对服务器直接断电),而是一个渐变的过程。例如系统长时间运行,数据会持续写入存储,存储空间逐渐变少,最终磁盘被写满而导致系统故障。
- 在不考虑人为因素的影响时,存储空间随时间变化存在很强的关联性,且历史数据对未来的发展存在一定的影响,故可采用时间序列分析法对磁盘已使用空间进行预测分析。
2、总体流程

第一步:数据抽取
磁盘使用情况的数据都存放在性能数据中,而监控采集的性能数据中存在大量的其他属性数据。故以属性的标识号(TARGET_ID)与采集指标的时间(COLLECTTIME)为条件,对性能数据进行抽取。
第二步:探索分析
对数据进行周期性分析,探索数据的平稳性。

C盘和D盘的使用的大小。
# -*- coding:utf-8 -*-
import pandas as pd
import matplotlib.pyplot as pltdata = pd.read_excel('data/discdata.xls')
str1 = 'C:\\'
str2 = 'D:\\'
dataC = data[(data['DESCRIPTION'] == '磁盘已使用大小') & (data['ENTITY'] == str1)]
dataD = data[(data['DESCRIPTION'] == '磁盘已使用大小') & (data['ENTITY'] == str2)]
dataC.plot(y='VALUE')
dataD.plot(y='VALUE')
plt.show()
第三步:数据的预处理
数据清洗:实际业务中,监控系统会每天定时对磁盘的信息进行收集,但是磁盘容量属性一般情况下都是一个定值(不考虑中途扩容的情况),因此磁盘原始数据中会存在磁盘容量的重复数据。
- 剔除磁盘容量的重复数据。
- 将所有服务器的磁盘容量作为一个固定值,方便模型预警时需要。
属性构造:因每台服务器的磁盘信息可以通过表中NAME,TARGET_ID,ENTITY三个属性进行区分,且每台服务器的上述三个属性值是不变的,所以可以将三个属性的值进行合并。 (实质是将行转换成列)。

# -*-coding: utf-8-*-
import pandas as pddef attr_trans(x):result = pd.Series(index=['SYS_NAME', 'CWXT_DB:184:C:\\', 'CWXT_DB:184:D:\\', 'COLLECTTIME'])result['SYS_NAME'] = x['SYS_NAME'].iloc[0]result['COLLECTTIME'] = x['COLLECTTIME'].iloc[0]result['CWXT_DB:184:C:\\'] = x['VALUE'].iloc[0]result['CWXT_DB:184:D:\\'] = x['VALUE'].iloc[1]return resultdiscfile = 'data/discdata.xls'
transformeddata = 'data/discdata_processed.xls'
data = pd.read_excel(discfile)
data = data[data['TARGET_ID'] == 184].copy()
# 按时间分组
data_group = data.groupby('COLLECTTIME')
data_processed = data_group.apply(attr_trans)
data_processed.to_excel(transformeddata, index=False)
3、构造容量预测模型

- 平稳性检验:为了确定原始数据序列中没有随机趋势或趋势,需要对数据进行平稳性检验,否则将会产生“伪回归”的现象。方法:单位跟检验或者观察时序图。
- 白噪声检验:为了验证序列中有用的信息是否已被提取完毕,需要对序列进行白噪声检验。如果序列检验为白噪声序列,就说明序列中有用的信息已经被提取完毕了,剩下的全是随机扰动,无法进行预测和使用。方法:一般采用LB统计量检验方法。
- 模型识别:通过AIC、BIC信息准则或者观测自相关图和偏自相关图确定P、Q的参数,识别其模型属于AR、MA和ARMA中的哪一种模型。
- 参数估计:估计模型的其他参数。可以采用极大似然估计、条件最小二乘法确定。
- 模型检验:检测模型残差序列是否属于白噪声序列。

# -*- coding:utf-8 -*-
import pandas as pddef stationarityTest():'''平稳性检验:return:'''discfile = 'data/discdata_processed.xls'predictnum = 5data = pd.read_excel(discfile)data = data.iloc[: len(data) - predictnum]# 平稳性检验from statsmodels.tsa.stattools import adfuller as ADFdiff = 0adf = ADF(data['CWXT_DB:184:D:\\'])while adf[1] > 0.05:diff = diff + 1adf = ADF(data['CWXT_DB:184:D:\\'].diff(diff).dropna())print(u'原始序列经过%s阶差分后归于平稳,p值为%s' % (diff, adf[1]))def whitenoiseTest():'''白噪声检验:return:'''discfile = 'data/discdata_processed.xls'data = pd.read_excel(discfile)data = data.iloc[: len(data) - 5]# 白噪声检验from statsmodels.stats.diagnostic import acorr_ljungbox[[lb], [p]] = acorr_ljungbox(data['CWXT_DB:184:D:\\'], lags=1)if p < 0.05:print(u'原始序列为非白噪声序列,对应的p值为:%s' % p)else:print(u'原始该序列为白噪声序列,对应的p值为:%s' % p)[[lb], [p]] = acorr_ljungbox(data['CWXT_DB:184:D:\\'].diff().dropna(), lags=1)if p < 0.05:print(u'一阶差分序列为非白噪声序列,对应的p值为:%s' % p)else:print(u'一阶差分该序列为白噪声序列,对应的p值为:%s' % p)def findOptimalpq():'''得到模型参数:return:'''discfile = 'data/discdata_processed.xls'data = pd.read_excel(discfile, index_col='COLLECTTIME')data = data.iloc[: len(data) - 5]xdata = data['CWXT_DB:184:D:\\']from statsmodels.tsa.arima_model import ARIMA# 定阶# 一般阶数不超过length/10pmax = int(len(xdata) / 10)qmax = int(len(xdata) / 10)# bic矩阵bic_matrix = []for p in range(pmax + 1):tmp = []for q in range(qmax + 1):try:tmp.append(ARIMA(xdata, (p, 1, q)).fit().bic)except:tmp.append(None)bic_matrix.append(tmp)bic_matrix = pd.DataFrame(bic_matrix)# 先用stack展平,然后用idxmin找出最小值位置。p, q = bic_matrix.stack().astype('float64').idxmin()print(u'BIC最小的p值和q值为:%s、%s' % (p, q))def arimaModelCheck():'''模型检验:return:'''discfile = 'data/discdata_processed.xls'# 残差延迟个数lagnum = 12data = pd.read_excel(discfile, index_col='COLLECTTIME')data = data.iloc[: len(data) - 5]xdata = data['CWXT_DB:184:D:\\']# 建立ARIMA(0,1,1)模型from statsmodels.tsa.arima_model import ARIMA# 建立并训练模型arima = ARIMA(xdata, (0, 1, 1)).fit()# 预测xdata_pred = arima.predict(typ='levels')# 计算残差pred_error = (xdata_pred - xdata).dropna()from statsmodels.stats.diagnostic import acorr_ljungbox# 白噪声检验lb, p = acorr_ljungbox(pred_error, lags=lagnum)# p值小于0.05,认为是非白噪声。h = (p < 0.05).sum()if h > 0:print(u'模型ARIMA(0,1,1)不符合白噪声检验')else:print(u'模型ARIMA(0,1,1)符合白噪声检验')def calErrors():'''误差计算:return:'''# 参数初始化file = 'data/predictdata.xls'data = pd.read_excel(file)# 计算误差abs_ = (data[u'预测值'] - data[u'实际值']).abs()mae_ = abs_.mean() # maermse_ = ((abs_ ** 2).mean()) ** 0.5mape_ = (abs_ / data[u'实际值']).mean()print(u'平均绝对误差为:%0.4f,\n均方根误差为:%0.4f,\n平均绝对百分误差为:%0.6f。' % (mae_, rmse_, mape_))stationarityTest()
whitenoiseTest()
findOptimalpq()
arimaModelCheck()
calErrors()
模型预测:应用模型进行预测,获取未来5天的预测值。为了方便比较,将单位换算成GB。

模型评价:
采用三个衡量模型预测精度的统计量指标:平均绝对误差、均方根误差、平均绝对百分误差,从不同侧面反映了算法的预测精度。

模型应用:
- 计算预测使用率:根据模型预测得到的值,计算预测使用率。
- 设定预警等级:根据业务应用一般设置的阈值,也可以根据管理员要求进行相应的调整。
- 发布预警信息

三、总结和思考
- 监控不仅能够获取软硬件的性能数据,同时也能检测到软硬件的日志事件,并通过告警的方式提示用户。因此管理员在维护系统的过程中,特别关注应用系统类别的告警。一旦系统发生故障,则会影响整个公司的运作。但是在监控收集性能以及事件的过程中,会存在各类型告警误告情况。(注:应用系统发生误告时系统实际处于正常阶段)
- 根据历史每天的各种类型的告警数,通过相关性进行检验判断哪些类型告警与应用系统真正故障有关。通过相关类型的告警,预测明后两天的告警数。针对历史的告警数与应用系统的关系,判断系统未来是否发生故障。
- 可通过时序算法预测未来相关类型的告警数,然后采用分类预测算法对预测值进行判断,判断系统未来是否发生故障。
相关文章:
【数据挖掘实战】——应用系统负载分析与容量预测(ARIMA模型)
项目地址:Datamining_project: 数据挖掘实战项目代码 目录 一、背景和挖掘目标 1、问题背景 2、传统方法的不足 2、原始数据 3、挖掘目标 二、分析方法与过程 1、初步分析 2、总体流程 第一步:数据抽取 第二步:探索分析 第三步&a…...
【华为OD机试模拟题】用 C++ 实现 - 九宫格按键输入(2023.Q1)
最近更新的博客 【华为OD机试模拟题】用 C++ 实现 - 去重求和(2023.Q1) 文章目录 最近更新的博客使用说明九宫格按键输入题目输入输出示例一输入输出说明示例二输入输出说明Code使用说明 参加华为od机试,一定要注意不要完全背诵代码,需要理解之后模仿写出,通过率才会高…...
Linux: config: CONFIG_SYN_COOKIES
文章目录 CONFIG_SYN_COOKIESLinux kernel里的超时设置Huawei SBC详细工作机制CONFIG_SYN_COOKIES config SYN_COOKIES,布尔值;是否支持IP:TCP syncookie功能。 详解:一般来说TCP/IP网络不能够阻挡SYN flooding工具。这个工具很容易被利用,而且会导致DOS工具,妨碍其他整…...
【笔记】C# 数据类型转换
文章目录前言类型转换的概念1,隐式转换2,显式转换3,程序类转换结语前言 🌻 大家好啊,我是writer桑,本章是关于 C# 数据类型转换的一个总结,其中包含隐式、显示转换和程序类转换,方便…...
JavaWeb JavaBean,MVC三层架构
9、JavaBean 实体类 JavaBean有特定的写法: 必须要有一个无参构造属性必须私有化必须有对应的get/set方法; 一般用来和数据库的字段做映射 ORM; ORM :对象关系映射 表—>类字段–>属性行记录---->对象 people表 …...
JavaEE简单实例——MyBatis一对多关联映射的嵌套结果集查询
简单介绍: 在之前的章节,我们简单介绍了MyBatis中的一对一的关联查询,使用了嵌套查询和嵌套结果集两种方式进行讲解,但是在实际的使用中,我们常用的是嵌套结果集的查询方式,所以在一对多的查询中ÿ…...
大数据框架之Hadoop:MapReduce(三)MapReduce框架原理——OutputFormat数据输出
3.6.1OutputFormat接口实现类 OutputFormat是MapReduce输出的基类,所有实现MapReduce输出都实现了OutputFormat接口。下面我们介绍几种常见的OutputFormat实现类。 1、文本输出TextOutputFormat 默认的输出格式是TextOutputFormat,它把每条记录写为文…...
Linux搜索、编辑
目录 1.搜索 1.1.基础用法 1.2.高级用法 2.编辑 2.1.vim简洁 2.2.vim快捷键 1.搜索 1.1.基础用法 find命令用于搜索,格式如下: find 指定目录 -匹配方式 所要匹配的关键字 所要匹配的关键字支持通配符,?代表一个字符*代表任意个字符。 如果想设…...
Git Commit提交规范总结
文章目录前言git commit 提交规范提交消息头(commit message header)提交消息具体内容(commit message body)提交消息尾述(commit message footer)Revert表情(Emojis)标识idea插件其他操作Commitizen生成 Change logGit获取提交消息格式化输出相关参考前言 我们都知道…...
【ESP 保姆级教程】疯狂毕设篇 —— 案例:基于ESP8266和EMQX的教室灯光控制系统
忘记过去,超越自己 ❤️ 博客主页 单片机菜鸟哥,一个野生非专业硬件IOT爱好者 ❤️❤️ 本篇创建记录 2023-02-26 ❤️❤️ 本篇更新记录 2022-02-26 ❤️🎉 欢迎关注 🔎点赞 👍收藏 ⭐️留言📝🙏 此博客均由博主单独编写,不存在任何商业团队运营,如发现错误,请…...
SpringBoot (一) 项目构建、配置读取、静态资源定义
哈喽,大家好,我是有勇气的牛排(全网同名)🐮 有问题的小伙伴欢迎在文末评论,点赞、收藏是对我最大的支持!!!。 前言 SpringBoot是基于Spring开发的开源项目,…...
<JVM上篇:内存与垃圾回收篇>12 - 垃圾回收相关概念
笔记来源:尚硅谷 JVM 全套教程,百万播放,全网巅峰(宋红康详解 java 虚拟机) 文章目录12.1. System.gc()的理解12.2. 内存溢出与内存泄露内存溢出(OOM)内存泄漏(Memory Leakÿ…...
new操作符做了什么?
new是什么? new 运算符创建一个用户定义的对象类型的实例或具有构造函数的内置对象的实例。 function Person (name,age) {this.name namethis.age age } Person.prototype.sayName function () {console.log(this.name) } let man new Person(xl,20) consol…...
Java_IO流,书城IO版
1.字符IO流的输入/输出 首先,IO流根据多方面划分。 根据方向划分 输入流/输出流根据处理单元划分 字节流/字符流根据功能划分 节点流/处理流 尝试一下使用字符输入流在读写文件: package IOStream;import java.io.*;public class Test {public stati…...
2023自动化测试岗位需求的 7 项必备技能 (最新版)
目录:导读 一、自动化测试员技能——编程语言 二、自动化测试员技能–出色的手动测试技能 三、.自动化测试员技能–自动化工具专业知识 四、自动化测试员技能–了解业务需求 五、自动化测试员技能–自动化工具故障排除 六、自动化测试员技能–具有测试管理工具…...
【华为OD机试模拟题】用 C++ 实现 - 路灯照明(2023.Q1)
最近更新的博客 【华为OD机试模拟题】用 C++ 实现 - 去重求和(2023.Q1) 文章目录 最近更新的博客使用说明路灯照明【华为OD机试模拟题】题目输入输出描述示例一输入输出说明Code使用说明 参加华为od机试,一定要注意不要完全背诵代码,需要理解之后模仿写出,通过率才会高…...
学到贫血之-贫血模型和充血模型
学习自:设计模式之美 1 基于贫血模型的传统开发模式 // ControllerVO(View Object) public class UserController {private UserService userService; //通过构造函数或者IOC框架注入public UserVo getUserById(Long userId) {UserBo userBo userService.getUser…...
Java常用组件面试题
文章目录HTTP通信协议Kafka消息队列Linux操作系统Mybatis框架SpringCloud框架HTTP通信协议 https通信过程 https协议是指对通过http协议传输数据的进行加密和解密。当客户端发送https请求时,服务端会返回数字证书给客户端,客户端验证通过后会生成随机数…...
MySQL常见问题的解决方法
目录 cmd没有管理员权限 没有my.ini这个文件 ERROR 1045 (28000): Access denied for user ODBClocalhost (using password: NO) ERROR 1045 (28000): Access denied for user rootlocalhost (using password: NO) 其他常见问题 cmd没有管理员权限 cmd一定要用管理员权限打…...
全网详细介绍nginx的反向代理、正向代理配置,location的指令说明,反向代理的两个示例代码以及全局块,events块和http快的说明。
文章目录1. 文章引言2. 何谓反向代理3. 解析nginx的配置文件3.1 全局块(global block)3.2 events块(events block)3.3 http块(http block)4. 如何配置反向代理4.1 反向代理示例14.2 反向代理示例25. 补充说明5.1 location指令说明5.2 nginx完整配置文件1. 文章引言 如果你的服务…...
CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型
CVPR 2025 | MIMO:支持视觉指代和像素对齐的医学视觉语言模型 论文信息 标题:MIMO: A medical vision language model with visual referring multimodal input and pixel grounding multimodal output作者:Yanyuan Chen, Dexuan Xu, Yu Hu…...
微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】
微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来,Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...
MVC 数据库
MVC 数据库 引言 在软件开发领域,Model-View-Controller(MVC)是一种流行的软件架构模式,它将应用程序分为三个核心组件:模型(Model)、视图(View)和控制器(Controller)。这种模式有助于提高代码的可维护性和可扩展性。本文将深入探讨MVC架构与数据库之间的关系,以…...
【项目实战】通过多模态+LangGraph实现PPT生成助手
PPT自动生成系统 基于LangGraph的PPT自动生成系统,可以将Markdown文档自动转换为PPT演示文稿。 功能特点 Markdown解析:自动解析Markdown文档结构PPT模板分析:分析PPT模板的布局和风格智能布局决策:匹配内容与合适的PPT布局自动…...
HTML前端开发:JavaScript 常用事件详解
作为前端开发的核心,JavaScript 事件是用户与网页交互的基础。以下是常见事件的详细说明和用法示例: 1. onclick - 点击事件 当元素被单击时触发(左键点击) button.onclick function() {alert("按钮被点击了!&…...
Maven 概述、安装、配置、仓库、私服详解
目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...
C++使用 new 来创建动态数组
问题: 不能使用变量定义数组大小 原因: 这是因为数组在内存中是连续存储的,编译器需要在编译阶段就确定数组的大小,以便正确地分配内存空间。如果允许使用变量来定义数组的大小,那么编译器就无法在编译时确定数组的大…...
return this;返回的是谁
一个审批系统的示例来演示责任链模式的实现。假设公司需要处理不同金额的采购申请,不同级别的经理有不同的审批权限: // 抽象处理者:审批者 abstract class Approver {protected Approver successor; // 下一个处理者// 设置下一个处理者pub…...
API网关Kong的鉴权与限流:高并发场景下的核心实践
🔥「炎码工坊」技术弹药已装填! 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 引言 在微服务架构中,API网关承担着流量调度、安全防护和协议转换的核心职责。作为云原生时代的代表性网关,Kong凭借其插件化架构…...
若依登录用户名和密码加密
/*** 获取公钥:前端用来密码加密* return*/GetMapping("/getPublicKey")public RSAUtil.RSAKeyPair getPublicKey() {return RSAUtil.rsaKeyPair();}新建RSAUti.Java package com.ruoyi.common.utils;import org.apache.commons.codec.binary.Base64; im…...
